
1

A Model of How Students Engineer Test Cases With Feedback

AUSTIN M. SHIN
∗
, Ridgeline, Inc., USA

AYAAN M. KAZEROUNI, California Polytechnic State University, USA

Background and Context. Students’ programming projects are often assessed on the basis of their tests

as well as their implementations, most commonly using test adequacy criteria like branch coverage, or, in

some cases, mutation analysis. As a result, students are implicitly encouraged to use these tools during their

development process (i.e., so they have awareness of the strength of their own test suites).

Objectives. Little is known about how students choose test cases for their software while being guided by

these feedback mechanisms. We aim to explore the interaction between students and commonly used testing

feedback mechanisms (in this case, branch coverage and mutation-based feedback).

Method. We use grounded theory to explore this interaction. We conducted 12 think-aloud interviews with

students as they were asked to complete a series of software testing tasks, each of which involved a different

feedback mechanism. Interviews were recorded and transcripts were analyzed, and we present the overarching

themes that emerged from our analysis.

Findings. Our findings are organized into a process model describing how students completed software testing

tasks while being guided by a test adequacy criterion. Program comprehension strategies were commonly

employed to reason about feedback and devise test cases. Mutation-based feedback tended to be cognitively

overwhelming for students, and they resorted to weaker heuristics in order to address this feedback.

Implications. In the presence of testing feedback, students did not appear to consider problem coverage as a

testing goal so much as program coverage. While test adequacy criteria can be useful for assessment of software

tests, we must consider whether they represent good goals for testing, and if our current methods of practice

and assessment are encouraging poor testing habits.

CCS Concepts: • Software and its engineering → Software testing and debugging; • Social and profes-

sional topics→ Software engineering education.

Additional Key Words and Phrases: software engineering education, software testing, mutation analysis,

branch coverage

ACM Reference Format:

Austin M. Shin and Ayaan M. Kazerouni. 2023. A Model of How Students Engineer Test Cases With Feedback.

ACM Trans. Comput. Educ. 1, 1, Article 1 (January 2023), 30 pages. https://doi.org/10.1145/3628604

1 INTRODUCTION

Software testing is a core competency in undergraduate computer science and software engineering

programs (e.g., [4, 23, 38]). CS educators commonly assess the quality of student-written software

tests in addition to solution correctness (e.g., [24, 61, 67]). As such, as students implement solutions

∗
Work performed while at California Polytechnic State University.

Authors’ addresses: Austin M. Shin, amshin1775@gmail.com, Ridgeline, Inc., 1 Grand Ave., San Luis Obispo, California,

USA, 93405; Ayaan M. Kazerouni, ayaank@calpoly.edu, California Polytechnic State University, 1 Grand Ave., San Luis

Obispo, California, USA, 93405.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1946-6226/2023/1-ART1 $15.00

https://doi.org/10.1145/3628604

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2023.

HTTPS://ORCID.ORG/0009-0002-2899-4011
HTTPS://ORCID.ORG/0000-0002-6574-1278
https://doi.org/10.1145/3628604
https://orcid.org/0009-0002-2899-4011
https://orcid.org/0000-0002-6574-1278
https://doi.org/10.1145/3628604

1:2 A. M. Shin & A. M. Kazerouni

and write tests, it is usually desirable for them to engage in a related self-checking behavior—using

a test adequacy criterion to frequently assess the quality of their own tests.

A test adequacy criterion describes the conditions that need to be met for a set of software tests

to be considered “adequate” [31]. The focus of such a criterion is the tests, not the software under

test. For example, branch coverage and mutation analysis are two common test adequacy criteria

(§2.2). Students are often expected to meet some threshold using one of the above criteria for their

tests to be considered “thorough” [1, 23]. That is, they are incentivized to write “strong” (according

to the criterion) test suites in their programming projects.

Prior work has compared test adequacy criteria in terms of defect-detection capability; mutation

analysis is a far stronger and more reliable criterion than branch coverage [24, 35, 46, 53]. Other

studies have explored the thought processes of students [20] and software engineers [5, 28] as they

compose test suites and of students as they write programs [8]. We add to this body of work by

exploring students’ interactions with different test adequacy criteria while composing test suites.

This paper addresses the research question: How do students make use of feedback from

test adequacy criteria as they compose software test cases? We report on qualitative results

from 12 one-on-one interviews in which students were asked to think aloud while completing

software testing tasks, being guided by different testing feedback mechanisms (test adequacy

criteria). Testing tasks were carried out using an application we built for researching and assigning

software testing exercises. We used grounded theory to explore how students approach a software

testing task and interact with various feedback mechanisms. Grounded theory is appropriate when

little is known about the phenomenon being studied, and we are aware of little prior work exploring

the interaction between students (or indeed, professional developers) and test adequacy criteria as

they create software tests. Where possible, we build on concepts defined in prior work ([5, 28]).

2 BACKGROUND

2.1 Software testing in fundamental CS courses

Testing is taught at various levels in the undergraduate CS curriculum, e.g., in dedicated software

testing courses [4, 12], in introductory programming courses [23, 37], or integrated holistically into

the curriculum [38]. In this paper we are concerned with software testing instruction in fundamental

CS courses (e.g., CS 1 to CS 3). Though there is a large body of relevant work, Scatalon et al. [59]

note that most scholarship in the area describes tools and experience reports, and describe a need

for theory generation and experimental research about various aspects of testing instruction, e.g.,

how we should teach testing, how students learn testing, their perspectives on testing, and the

impact of testing on their programming abilities.

Research about testing pedagogy tends to focus on students’ testing process and test quality.

Practice and assessment of these two aspects are tightly intertwined. Put simply, we want students

to write strong software tests, and to write them early and often [19, 43].

Empirical evidence suggests that continuous engagement with software testing is associated with

both higher-quality test suites and higher-quality programs [43]. Many have argued for teaching

test-first styles of development like test-driven development (TDD) [23, 37, 61], while others have

generally advocated for continuous engagement with testing, so long as it is done before or soon

after writing the code-under-test [42].

Early testing is beneficial because it encourages the student to think systematically about the

problem they are solving before large portions of their implementation have taken shape. There

is some evidence that students struggle with problem comprehension [56, 66], i.e., they form

an incorrect mental model of the problem and make significant progress toward a solution to

the wrong problem. Automated assessment tools like Web-CAT [23] incentivize early testing by

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2023.

A Model of How Students Engineer Test Cases With Feedback 1:3

requiring students to meet minimum thresholds of test adequacy before receiving feedback about

their implementations (that is, Web-CAT will not test a student’s code if the student has not tested

it themselves). The authors of Marmoset [61] suggest that looking for gaps in students’ tests when

they seek help could mitigate the effects of their expedient help-seeking behaviors [40]. Wrenn &

Krishnamurthi [66] have proposed training early testing by encouraging students to write machine-

checkable input-output examples before beginning their implementations, which are then checked

against instructor-written faulty implementations.

To encourage students to write strong software tests, instructors often require students’ test

suites to meet minimum thresholds of test adequacy in order to get full credit on assignments. For

example, systems likeWeb-CAT [23] andMarmoset [61] base a portion of the student’s project grade

on the adequacy of their tests measured by criteria like branch coverage. Wrenn & Krishnamurthi

[66] assess test adequacy by running students’ assertions against a suite of intentionally-faulty

instructor-written implementations. Finally, Goldwasser [30] proposed assessing the strength of

students’ tests by running their tests against all other students’ implementations, and checking

whether tests were able to detect known-faulty implementations.

Since students may be graded based on these criteria, they are implicitly encouraged to incor-

porate them into their development workflows. That is, as students are encouraged to frequently

write and run their tests in order evaluate their program correctness, so they are encouraged to

frequently assess the adequacy of their tests using criteria like branch coverage. Little is known

about this type of self-checking behavior in students. We explore this gap in this paper by studying

how students choose test cases while being guided by different test adequacy criteria (namely

branch coverage and mutation analysis).

2.2 Test adequacy criteria

A test adequacy criterion describes the conditions that must be met for a test suite to be considered

“adequate” [31]. Numerous test adequacy criteria have been proposed over the years, but branch

coverage and mutation analysis are of primary relevance to this paper. We focus on these criteria

because they can be applied incrementally, i.e., during the software development process [41], and

they are commonly used as assessment criteria in education and industry. Instructor-written faulty

implementations [66] also meet the incrementality requirement, but they are less commonly used

in educational settings.

Branch coverage is satisfied when all logical branches in the control-flow graph of the program

are executed by the test suite [51]. For example, for code involving if conditions, the condition

must be made to evaluate to True at least once and False at least once. The “condition” that

is checked for coverage may be composed of multiple sub-conditions connected by relational

operators. The test suite’s adequacy is measured as a percentage of branches that are covered.

The shortcomings of measures like branch coverage are widely known: they depend on the tests

simply executing the entire program, and not on the assertions within those tests. As such, they

are not a good indicator of a test suite’s fault-finding capabilities [1, 24, 63] and do not strongly

correlate with software reliability [34–36, 46]. Despite these shortcomings, code coverage measures

are commonly used in educational settings (e.g., [12, 23, 33, 61]) since they are fast to compute,

easy to reason about, and have good out-of-the-box support in tools like IDEs and continuous

integration workflows.

Mutation analysis [17] is a far stronger criterion [1, 24, 41, 53]. It works by systematically

generating alternate versions of the original program (mutants) and evaluates test suites by running

them against these mutants. A mutant is considered detected or “killed” when it causes a test to

fail or otherwise behave badly (e.g., time out or crash with an exception). The adequacy of the test

suite—its mutation coverage—is thus measured as the percentage of mutants it kills.

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:4 A. M. Shin & A. M. Kazerouni

Mutants are generated by making syntactic changes to the program (e.g., changing > to <= ,

or replacing an entire Boolean expression with true or false). The types of changes that can

be made are called mutation operators. While there can be infinitely many mutation operators in

principle, they have been designed to emulate errors commonly made by programmers [44].

Mutation analysis subsumes branch coverage [53]. This means that if a test suite satisfiesmutation

analysis (i.e., all killable mutants are killed), then it satisfies branch coverage. The reverse is not

true—satisfying branch coverage is not an indication that a test suite also satisfies mutation analysis.

Numerous empirical studies have made a case for the validity and effectiveness of mutation anal-

ysis. Mutants generated by common mutation operators have been shown to be usable substitutes

for “real” software defects [32, 39]. Moreover, Just et al. report that developers write more and

better tests when using mutation analysis for feedback [55].

Educators have considered using mutation analysis to assess student-written software tests [1, 24,

33, 41]. Aaltonen et al. [1] report that it is a more difficult criterion than code coverage for students

to satisfy, leading them to write stronger test suites. These findings were echoed by Edwards et

al. [24]. Contrary to other findings, Hall et al. [33] report that students wrote fewer test methods

when they were guided by mutation-based feedback than when they were guided by coverage-based

feedback. However, their tests were more complex when using mutation-based feedback: they used

more of the assertion types available in the testing library, and each test method contained more

assertions on average.

Shortcomings of mutation analysis include its high computational cost and the possibility of

generating equivalent mutants.
1
Previous work [41] has explored methods to reduce the computa-

tional cost of mutation analysis such that it could reasonably be deployed in automated assessment

tools like Web-CAT.

We are not aware of prior work that explores the cognitive aspects of mutation-based feedback

and code coverage-based feedback in educational settings. We take steps toward this in this paper.

2.3 Models of software tester cognition

Enoiu et al. propose the first framework that we are aware of describing the cognitive process of

software testers [28]. Their model describes software testing as a cyclical problem-solving model,

with testers repeatedly identifying and understanding test goals, planning a testing strategy, writing

and executing tests, and evaluating results. They also discuss other influences on the test-writing

process like motivation, creativity, psychological factors, and social factors.

In follow-upwork [27], Enoiu and Feldt note that identifying cognitive processes just fromwritten

tests can be difficult. They recommend the use of verbal protocol analysis (having participants

think aloud) to better identify explanations for behaviors. In this respect, our work complements

the work of Hall et al. [33]—they quantitatively analyzed tests that were written by students guided

by coverage- and mutation-based feedback, while we used a think-aloud procedure to explore

students’ interactions with these feedback mechanisms (§3.2).

Aniche et al. followed the recommended think-aloud procedure and observed developers as

they wrote tests for specific pieces of software [5]. Based on their results, they proposed their own

model of software tester thought processes. They identified six main concepts and the relationships

between them that the testers would use as they worked. Specifically, developers would build up a

mental model of the program as they worked, guided by the source code and the documentation.

1
Equivalent mutants are functionally identical to the original program, and therefore cannot be detected by a test suite. The

problem of identifying these mutants automatically is undecidable in general; it is the subject of a large body of research

that is out of the scope of this paper [48].

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2023.

A Model of How Students Engineer Test Cases With Feedback 1:5

They would select test cases based on this mental model and aim to satisfy an adequacy criterion

(specifically, code coverage in [5]) with their test code.

The models described above inform our data collection, analysis, and interpretations. Following

recommendations from Enoiu and Feldt [27], we used a think-aloud protocol to gain insight into

students’ thought processes while they composed software test suites. Test adequacy criteria are

good examples of “test goals” described in Enoiu’s model—an important role of test adequacy

criteria is to guide the developer to test parts of their software.

Additionally, we draw inspiration from the work of Pennington [54] and Castro & Fisler [8], who

emphasize the importance of “plan knowledge” or “task-level thinking”. Castro & Fisler observed

how novice programmers shifted between thinking about a programming problem at the task level

(focusing on task decomposition) and the code level (focusing on the source code). They noticed

that students who moved back and forth between task-level and code-level thinking tended to fare

the best, while those who stayed at the code level tended to perform the worst. We noticed similar

movements while students wrote tests, though we did not note any significant associations with

specific test adequacy criteria.

We build on the works described above (particularly those of Enoiu et al. [27, 28] and Aniche

et al. [5]) by focusing on how students’ test-selection strategies vary based on the test adequacy

criterion that is guiding them.

3 METHODOLOGY

We conducted think-aloud interviews in which students were asked to complete software testing

tasks while being guided by feedback from a test adequacy criterion. We describe tooling we built

for data collection (§3.1) and our interview (§3.2) and analysis (§3.3) procedures.

3.1 Data collection tool

Before carrying out the interviews, we attended to certain confounding factors. First, different levels

of familiarity with testing libraries could affect participants’ test-writing habits. Second, branch

coverage and mutation analysis enjoy differing levels of integration with software development

environments. IDEs like PyCharm and VS Code have good out-of-the-box support for displaying

branch coverage feedback, but most mutation analysis tools provide feedback simply as lists of

killed or surviving mutants, often as textual output printed to the standard output stream (see §7.2).

This discrepancy could further affect how participants respond to different feedback mechanisms.

To avoid these confounding effects, we built an application called Muttle to help us collect

data for this study (depicted in Figure 1). This section briefly describes its key features.

Muttle provides an interface for students to complete testing exercises in which they are

presented with a Python function and a problem statement, and are asked to write tests for the

function. Muttle uses pytest [47] to execute test cases, but this is hidden from the user. Test

cases are written as input-output pairs (corresponding to individual assertions as opposed to entire

test methods). For each test case, the user writes one or more comma-separated input values

(corresponding to the parameters accepted by the function) and one expected output value. Any

valid Python expressions can be used as inputs and output. This precludes the need for familiarity

with any Python testing library. Users can freely add and remove any number of test cases, and can

run their test cases and receive feedback about them at any time.

Muttle does not display testing feedback until the user submits a test suite containing one or

more tests. It supports three feedback modes. Each successive feedback mode includes the previous

one. The first is no feedback (NoFeedback). This mode simply tells the user whether each test

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:6 A. M. Shin & A. M. Kazerouni

Fig. 1. The Muttle interface. Each exercise lets the user create, modify or delete test cases (A). If their

test cases pass, they are given BranchCov feedback in the colored gutter next to the line numbers (B) or

MutationCov feedback in the form of bug badges above the lines of code where mutations were made (C)

In this example, the statement return x * y was mutated to return x ** y . The interviewer used the

toggles at the top of the screen to switch between no coverage, code coverage, or mutation analysis feedback,

based on the experimental condition (D).

passed or failed (including if the test failed to compile), but gives no indication of the thoroughness

of the test suite. This indication is shown in all feedback modes.

Next, Muttle displays branch coverage information (BranchCov). It displays this information

using a form that is common in IDEs, i.e., the gutter of the editor is colored red if the line was not

executed at all, green if the line was fully covered, or yellow (for branching lines) if the line was

partially covered. Branch coverage is computed using pytest [47].

Finally, Muttle supports mutation coverage feedback (MutationCov), represented by bug

badges appearing above lines of code that contain surviving mutants. Clicking on a badge displays

the original and mutated code side-by-side. The original code has a line drawn through it. We are

not aware of mutation analysis tools that communicate feedback using this form. We discuss this

further in §7.2. Since mutation analysis subsumes branch coverage [53], BranchCov feedback is

also displayed in the gutter in this mode. Mutation analysis is conducted using MutPy [18].

3.2 Think-aloud interviews

3.2.1 Interview procedure. We conducted 12 one-on-one think-aloud interviews in which partici-

pants were asked to devise test cases for Python functions that were chosen by the researchers.

Our primary data sources were audio and screen-capture recordings of the interviews and the ac-

companying transcriptions. The following protocol is similar to that of Whalley et al.’s think-aloud

study on debugging practices [64]. It was approved by our institutional review board (IRB).

The study was conducted at a public, medium-sized, primarily-undergraduate university in the

USA. We recruited students who had completed the first and second programming course in our

introductory course sequence for computer science majors: an introductory programming course

and a Data Structures course taught in Python. Students were recruited by making announcements

in sections of the course that follows the Data Structures course, an Object-oriented programming

(OOP) and design course taught in Java. Interested students reached out to the researchers over

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2023.

A Model of How Students Engineer Test Cases With Feedback 1:7

email and interviews were scheduled with everyone who expressed interest (i.e., we did not choose

specific students to interview).

Our university runs on the quarter system (i.e, 10-week academic terms as opposed to 15–16

weeks). Interviews were conducted during the Spring 2022 term. The participant pool was made

up of mostly first-year computing (Computer Science or Computer Engineering) majors, who

had typically taken the previous two CS courses during the previous two academic terms. Non-

computing majors (who are typically achieving a minor in CS) tend to take CS courses later in their

post-secondary education—this applies to two students who were in their second year, and one

who was in their third year.

Interviewees generally performed well in the first CS course, but there was a larger spread of

performance in Data Structures, with letter grades ranging from A to C+. Still, having passed the

previous two courses, participants were considered to be “accomplished novices” in terms of their

Python programming abilities. In particular, the Data Structures course involved fairly complex

data structures (e.g., a Huffman tree) and recursive algorithms. Assignments in the previous courses

required unit testing, and students had previously been graded based on the branch coverage

achieved by their tests. So they were familiar with that particular adequacy criterion.

Each interview took 30–45 minutes, and students were compensated with a $25 Amazon gift

card for their participation.

Interviews were carried out in person by one author of this paper. All interviews began with a

short demographic survey, following which the researcher provided the participant with a laptop

that was running a locally-hosted version of Muttle (§3.1). Participants used this laptop to create

test cases and used the provided feedback to check their progress, while thinking out loud. The

laptop was also running a Zoom call with no other participants; this was used to capture voice and

screen recordings of the sessions.

The testing session began with the researcher giving the participant an introduction to the

Muttle interface, and giving them a “warm-up” function for which they wrote tests. This warm-up

activity also allowed participants to get used to “thinking out loud”. Following this, participants were

given 3 functions to test, one after the other. They were told their job was to “test the function”. For

each function, the participant was given a different form of feedback (NoFeedback, BranchCov,

or MutationCov). Students were not required to stop testing after satisfying a given feedback

condition. The interviewer returned to the warm-up problem between each function to demonstrate

each new feedback mechanism.

After an initial adjustment (§3.2.3), all participants tested the same 3 functions. The order of

functions was rotated from one interview to the next. Each function-feedback pair was attempted

by two participants in an effort to minimize effects arising from particular participant-function-

feedback combinations.

The order in which feedback conditions were presented to participants remained consistent

through the interviews, since each feedback type is subsumed by the subsequent type (in the order

NoFeedback → BranchCov→ MutationCov).

We imposed a hidden time limit of 20 minutes to test each function, but that time limit was never

reached.

In sum, interviews proceeded as follows:

(1) Warm-up problem with NoFeedback

(2) Problem 1 with NoFeedback

(3) Warm-up problem with BranchCov

(4) Problem 2 with BranchCov

(5) Warm-up problem with MutationCov

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:8 A. M. Shin & A. M. Kazerouni

(6) Problem 3 with MutationCov

3.2.2 Interview procedure updates. Following the principle of constant comparative analysis [29],

we analyzed data after each interview and adjusted our data collection procedures accordingly. In

particular, some changes were made to the interview procedure as interviews progressed.

“Is this program correct?” Occasionally the participant asked the interviewer if the program they

were testing was correct. As a reflex reaction the first time this happened, the interviewer said

“yes”. We gave non-committal answers to this question in future interviews.

Explaining MutationCov to novices.We struggled to find a novice-friendly way of explaining

MutationCov feedback to students. Eventually, we settled on “if this bug existed in your code,

none of your tests would have caught it and failed”.

Stable ordering of feedback mechanisms.We originally rotated the order of feedback conditions

from one interview to the next. Since feedback mechanisms built on one another, we found that it

made the most sense to consistently present students with feedback in the order NoFeedback →
BranchCov → MutationCov. This change was made after the first 3 interviews.

More detailed program descriptions. We noticed that participants asked more clarifying questions

for Triangle and Centered Average than for Rainfall, perhaps due to the longer description

for Rainfall. We added more clarifying detail to the descriptions for Triangle and Centered

Average. We did not receive noticeably differing levels of clarifying questions after that.

Updates to selected problems. In early interviews we noticed that some functions did not give

students an opportunity to engage much with the testing feedback. These problems were replaced

with others. See §3.2.3 for details.

3.2.3 Problem selection. We chose a set of functions that had good coverage of programming

concepts that the students would be familiar with (e.g., loops, conditional control flow, arithmetic).

We arrived at these problems after conducting pilot interviews before beginning the research study

with the intended participants. The descriptions and code used for each problem are available in

Appendix A.

Multiply. This warm-up function took two inputs and returned their product. Due to its

simplicity, it did not provide opportunities to demonstrate the different feedback mechanisms, so it

was replaced with Larger.

Larger. This warm-up function returned the larger of two numbers. It was written relatively

verbosely since it was only used to demonstrate branch coverage and mutation analysis, which

need more program constructs to generate feedback.

Triangle. To include conditional branching logic, the next function was the triangle classification

problem, which is commonly studied in software testing textbooks [2] and research papers [41, 45].

The function takes in three side lengths and returns a number indicating the kind of triangle they

form (1 if equilateral, 2 if isosceles, 3 if scalene), or 0 if they do not form a valid triangle.

Rainfall. We included the rainfall problem, which is commonly used in computing education

research as a measure of novice students’ programming abilities (e.g., [8, 49]). The function takes in

a list of numbers (daily rainfall) and computes the average rainfall. It stops counting rainfall when

it comes across a sentinel value (99999), and must discard negative values as they are invalid.

Selection Sort. The function performs a selection sort on a given input list. Participants did

not receive useful testing feedback on this function. The first participant reached 100% branch

coverage with a single test case, and the second participant received only equivalent mutants. These

did not allow us to study how the participant responded to the feedback, so we replaced selection

sort with Centered Average.

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2023.

A Model of How Students Engineer Test Cases With Feedback 1:9

Centered Average. The function computes the mean of the given list of numbers but excludes

the minimum and maximum values from the computation. If there are multiple instances of the

minimum and maximum, it excludes only one of each. The function assumes that there are at least

two items in the list.

3.3 Analysis

We employed a grounded theoretic approach [29] to analyze participants’ thought processes as

they wrote tests for a series of Python functions. We aimed to characterize their test input selection

strategies when they are given feedback based on different test adequacy criteria (NoFeedback,

BranchCov, or MutationCov).

Our goal in this work is exploration of students’ interactions with mechanisms for feedback about

their software tests. As such, we did not approach the analysis with specific research questions

or overarching hypotheses in mind. Grounded theoretic approaches are appropriate when little is

known about the phenomena being studied [9]. Since there is a scarcity of prior work on software

developers’ thought processes while they test, and none we are aware of that take the adequacy

criterion into consideration, we believe this is an appropriate methodology for this work.

Two researchers conducted open coding on the interview transcripts, preparing memos noting

individual moments of interest. We consulted the screen and audio recordings to resolve ambiguities

in the transcript, e.g., if the participant said something like “let me try this” and added a new test

case, or hovered their mouse to indicate portions of the code without reading the code out loud

(as an example, see code 31 in Table 2). As an example of an incident of interest, one participant

mentioned that they were writing a simple-to-understand test to start with. This snippet was tagged

with the code “writing a basic, easy-to-reason-about test”. Another participant mentioned that,

due to a programming course they have taken, they tend to think in terms of BranchCov even

when writing tests without feedback. This was tagged as “prior experience with BranchCov leads

student to think in terms of BranchCov on their own”.

The open coding process led to a codebook of 39 codes. Two researchers individually coded the

first six interviews and then met to combine these initial codes into a codebook. Any matching or

closely related codes identified by both researchers were added to the codebook. Where only one

researcher identified a code, the incident was examined by both researchers together (using the

Zoom screen and audio recordings) before a code was agreed upon and added to the codebook.

After the codebook was created, both researchers used it as a guide to gather additional snippets

from the remaining interview transcripts and recordings. New codes did not emerge from this

process.

These initial codes were further analyzed in an axial coding process. The goal of the axial coding

step is to take the concrete initial codes and abstract them into higher-level themes or categories.

Higher-level categories were developed inductively by examining the initial codes and, where

appropriate, referring to extant literature. Codes were organized into categories based on the

following emergent factors.

• The stage of the test writing process (E.g., Had the student received any feedback yet? Had

they read and understood the program or description?)

• The test adequacy criterion used for feedback,

• Concepts in the cognitive models proposed by Enoiu et al. [28] and Aniche et al. [5], and

• Whether the participant appeared to be thinking terms of the problem or program [8, 54]

For instance, the two example initial codes described above were both included in the higher-

level category “testing with no feedback” (i.e., the first set of tests written before any feedback

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:10 A. M. Shin & A. M. Kazerouni

is presented). One researcher carried out the intermediate coding process following which both

researchers discussed the proposed categories and arrived at a shared understanding of them.

3.4 Acknowledging researchers’ positionality

Qualitative coding of interview transcripts and recordings involves researchers’ interpretations of

participants’ words and actions. The process is therefore inevitably influenced by the researchers’

perspectives, which we acknowledge in this section. Both researchers were men. The first researcher

was relatively new to computing education and related research—they had taught one introductory

programming course and ran the departmental peer tutoring center. They also had taken the same

CS courses as the interviewees a few years prior, when they were a student at the same institution.

All interviews were carried out by this researcher. The other researcher was more experienced in

computing education and related research, having taught and researched in the field for around 6

years. As a result, the research team brought mixed perspectives to the analysis: one with experience

in computing education research—particularly with research on student software testing—and one

with a perspective that was far closer to that of the students we interviewed.

4 RESULTS

Wepresent our results as compelling phenomena that ought to be further investigated. The emergent

themes are organized into a process model of students’ test writing in §5. The complete set of

codes accompanied by illustrative quotes or incidents is provided in Appendix B (Table 2). Codes

in Table 2 are grouped based on their parent categories.

Where applicable, we include quantitative observations from data collected in Muttle along

with our qualitative results (Table 1). Since participants were asked to test functions at least until

they satisfied the provided feedback criterion, their coverage of that criterion reached 100% in all

cases. That is, in the BranchCov condition, there is little to learn from branch coverage scores,

since it was satisfied in all cases. In the MutationCov condition, there is little to learn from

participants’ mutation coverage scores or branch coverage scores, since both were satisfied in all

cases.

However, two measures are of interest. First, the number of test cases the participant wrote under

a given feedback mechanism. Second, when students are given feedback based on less stringent

criteria (like NoFeedback and BranchCov), it is instructive to study their test suite’s performance

according to the more stringent criteria. For example, it is instructive to study the number and

types of mutants that survive a branch coverage-adequate test suite.

4.1 Problem and program comprehension

This theme is concerned with how students formed and developed their understanding of the

functions they were asked to test, corresponding to the “mental model” described in the framework

of Aniche et al. [5]. We are concerned with the initial formation of and subsequent updates to the

participant’s mental model of the problem and program under test.

All participants started by either reading the problem statement or by reading the code line-by-

line in order to understand the function they were asked to test. Similarly, Aniche et al. “[observed]

developers using the documentation as a way to build an initial mental model of the program

under test, which [was] then leveraged as the main source of inspiration for testing during the rest

of task” [5]. Some participants started by reading the function implementation (P2, P3, P6, P10,

P11) and only referred to the problem description when further clarification about the function’s

requirements were needed.

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2023.

A Model of How Students Engineer Test Cases With Feedback 1:11

[In Rainfall, on reading the description] Because that way it’s easier to understand

what the code is doing, especially since it’s not commented. (P6)

Other than one participant (P5), all participants who started by reading the description followed

this up by reading at least part of the program before testing.

Participants employed a number of strategies to update their mental models as their understand-

ing of a program evolved. Most participants (P1, P2, P3, P5, P6, P8, P9, P11, P12) read or re-read the

problem description, but some would (re)turn to the code (P1, P3, P4, P5, P6, P10).

In all three feedback conditions, a common code comprehension strategy was to rely on recogni-

tion of variable roles [57] (P1, P2, P3, P4, P6, P9, P11). For example, participants recognized variables

as being temporary holders of minimum or maximum values (in Selection Sort and Centered

Average). This understanding helped them to quickly process the source code at hand ([58]), and

also to quickly reason about test cases that would execute particular branches or distinguish a

mutant from the program’s original behavior.

[In Centered Average] min_index = 1 , I guess we just write a test where everything

is less than one. (Participant actually misunderstood the role of min_index here.) (P1)

Only one participant (P3) used a test as a meta-cognitive scaffold to confirm their understanding

of the problem prompt and program before testing ([56, 66]), though others used feedback from

failing tests to help them correct their misunderstandings (P5, P7). For example,

[In Rainfall, runs a test and that the output did not match the expected value] Expected

2...Wait. Am I missing something? It’s 6...Oh, but is 0 a positive number? (P5)

4.2 Responding to testing feedback

The three feedback conditions we employed were NoFeedback, BranchCov, and MutationCov.

Participants tended to write the most test cases when they were given MutationCov feedback

(median 6.5). Interestingly, they tended to write more tests when they were given NoFeedback

(median 5) than when they were given BranchCov feedback (median 4). Perhaps relatedly, two

participants (P2, P3) mentioned that they were putting in more testing effort since they were

participating in a study about testing.

Table 1 depicts the median number of tests written in each feedback condition and the test

adequacy achieved according to different criteria.

4.2.1 Testing with No Feedback. Some participants tested the code while reading it, either going

over the entire function or just part of it, formulating tests as they went. Of the students who tested

the code line-by-line in its entirety, two (P2, P3) jumped right into it without reading the function

description at all, while another two (P1, P6) read the description first. Four students (P8, P9, P10,

P11) wrote tests while reading the description.

[In Triangle] But like with this, especially like with this setup, I can look at my code

and write tests at the same time so I can just like go line-by-line and like look at each part

like each line and make sure that my code is like hitting every section. (P6)

Intuitions about “edge cases”. Every participant’s testing efforts were at least partially based on

their own intuitions about “edge cases”. When asked the reason behind this, participants pointed to

the Data Structures course that they had recently completed. That course included an automated

grading system in which instructor-written tests tended to include inputs of different data types

(integers/floating point values) and boundary values (positive/negative numbers, zero, empty lists).

Participants prioritized edge cases mirrored by these types of boundary values.

[In Rainfall] I think there would be something suspicious that would happen if it was

just a day with zero rainfall. (P1)

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:12 A. M. Shin & A. M. Kazerouni

Table 1. The median number of tests in the final test suite for each problem under each feedback condition,

and the test suite’s adequacy according to different criteria. Each row labeled "Median" depicts the median

values across all problems within that condition. The table does not include problems that were removed

from the interviews (§3.2.3).

Feedback Problem # Tests BranchCov MutationCov

NoFeedback

Triangle 7.5 100% 89%

Centered Average 6 100% 80%

Rainfall 6 100% 96%

Median 6 100% 89%

BranchCov

Triangle 5.5 100% 91%

Centered Average 1 100% 77%

Rainfall 4 100% 96%

Median 4 100% 89%

MutationCov

Triangle 10.5 100% 100%

Centered Average 5.5 100% 87%

Rainfall 6 100% 100%

Median 6.5 100% 100%

Mentally simulating BranchCov. Some participants used a mentally-approximated form of

branch coverage evenwhen they weren’t given that feedback (P3, P4, P11, P12). Theymentioned that

their tests had been assessed using the criterion in previous programming assignments. Additionally,

before we settled on a consistent ordering of feedbackmechanisms, one participant (P3) had received

feedback using BranchCov and MutationCov before reaching the NoFeedback condition—this

may have induced them to think in terms of one of those criteria.

[In Triangle, before any feedback has been displayed] So I guess I’ll just write tests for

all these three [Participant hovers mouse over lines 2–4 in Triangle] and...OK, so just

going off like the if statements or...yeah if statement. (P4)

[In Rainfall] Like I feel like ever since [recent CS course], like we have to have full

coverage all the time, I kind just feel like I have to look at everything so everything runs.

(P3)

Testing “beacons”. While testing with NoFeedback (or while writing initial tests before feedback

has been generated) some participants appeared to write tests to target specific features or “beacons”

in the code or description that caught their attention. Beacons are parts of a program that help a

reader understand what the code does (comments, variable or function names, etc.) [15]. In this case,

they appeared to drive participants’ testing efforts to an extent. The if days == 0: conditional

check in Rainfall and the final standalone return 3 in Triangle are examples of code that

“stood out” enough that students (P4, P9, P10, P11, P12) were drawn to writing a test for those lines

in particular, with some (P1, P2, P6, P10) going a step farther and writing multiple tests in order to

pre-emptively reach full (mentally-approximated) branch coverage. Similarly, most participants

were drawn to testing the sentinel number requirement in the Rainfall description early in their

testing process (P1, P3, P5, P7, P8, P11, P12), and one participant (P11) stated that they wanted to

first trigger every return statement in Triangle.

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2023.

A Model of How Students Engineer Test Cases With Feedback 1:13

[In Rainfall] I...first, I guess, for why-notsies I’ll...I’m first gonna write something just

that breaks this [Hovers mouse over rain_day == 99999] just because I want to make

sure that this runs. (P3)

On the whole, test suites written with NoFeedback were quite thorough. They scored a median

100% BranchCov and median 89% MutationCov. Surprisingly, test suites produced in the

NoFeedback condition tended to be as strong as tests produced in the BranchCov condition, as

measured by MutationCov (see Table 1).

4.2.2 Testing with Branch Coverage. We expected that students would engage in more code-level

thinking (as described by Castro & Fisler [8]) when driven by BranchCov, a structural adequacy

criterion. And they would engage in more task-level thinking when driven by MutationCov, a

fault-based adequacy criterion.

We did not find qualitative support for this expectation. Of the students who had any significant

BranchCov feedback (P1, P2, P4, P7, P9, P12), only one (P4) appeared to rely on significant

task-level thinking (i.e., they verbalized a test plan based primarily on the high-level problem

description). The rest focused on mentally executing the program with their test case inputs, using

the coverage gutter to direct them to uncovered or partially covered statements. It should be noted

that in the study by Castro & Fisler, the students were taught using a pedagogy that emphasized

programming plans and testing.

As described in §4.1, program comprehension was an important step in the testing process. Partic-

ipants developed strategies to manage the cognitive load associated with program comprehension

for the purpose of satisfying a test adequacy criterion.

Tracing basic blocks. While considering test case inputs, some participants traced individual basic

blocks in isolation as opposed to tracing the entire program (P2, P3, P7, P9, P12). A basic block in a

program is a straight-line sequence of statements such that “if the first statement is executed, all

statements in the block will be executed” [53]. For example, a function with cyclomatic complexity

of 1, or the then clause of an if condition (provided it doesn’t branch further).

Variable roles. Additionally, participants (P1, P2, P3, P4, P6) again employed their knowledge of

variable roles [57]. For example, consider the following code in Selection Sort:

if input_list[j] < input_list[min_idx]

When faced with partial BranchCov for this condition, one student (P1) used their knowledge

of the roles of the current and minimum index variables to deduce that they needed a test case

where a new minimum index was never found.

Ignoring feedback. Some participants (P2, P3, P9) chose to ignore BranchCov feedback in favor

of testing boundary values. When asked why, they said they were unsure of how to reach full

coverage for a statement, and that they would return to it once they had addressed boundary values.

Others expressed a desire to base their tests on the problem description and not the code (P7, P12).

[In Centered Average] Definitely code coverage is like something I try to catch after

I’ve written test cases [to my own satisfaction]. (P7)

Finally, the median participant wrote the fewest tests in this feedback condition (Table 1), meeting

expectations that it was easier for participants to satisfy BranchCov than MutationCov.

4.2.3 Testing with Mutation Coverage. Reasoning about MutationCov feedback appeared to

be a high-cognitive-load activity. Even after demonstrating an understanding of the idea behind

mutation analysis (by successfully killing other mutants), many participants struggled to devise

test cases to kill certain killable mutants (P2, P3, P4, P6, P8). In particular, difficulties seemed to

arise when mutants appeared in conditional statements (e.g., conditional operator replacements).

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:14 A. M. Shin & A. M. Kazerouni

To devise test cases to kill amutant, participants needed to develop andmaintain an understanding

of the mutated program in parallel to their understanding of the original program. They found

this parallel tracing of two programs to be fairly demanding. Sometimes this led to mistakes. For

example, the effort of comprehending a mutant seemed to distract P4 from their task to the extent

that when they wrote a test case, they wrote it so that it would pass the mutant program and fail

the original program.

[In Rainfall] So like given this [for loop], so it’s running through, everything’s running

through 1, it’s running through 2, running through 2, and so on and so forth, and then,

then it’s going to... [trails off] You know, I’m not entirely sure how to squash this bug.

(P10)

When this dual code comprehension task overloaded participants’ working memory, they devel-

oped ad-hoc coping strategies.

Tracing mutants. Participants traced the mutant program line-by-line with a specific input value,

similar to how they traced the original program while forming their initial mental model of the

function. They would focus on identifying the point during execution where the mutated program

would deviate from the original program (P3, P4, P6, P7, P8, P11, P12), if such a point exists.
2

Our observations echo findings from Middleton & Stolee [50]. In their study, when developers

were asked to tell the difference between two code snippets, they either traced one entire code

snippet before moving onto the second one, or moved frequently back-and-forth between the

snippets, comprehending smaller chunks of each in tandem. Middleton & Stolee refer to this latter

strategy as structural comparison, i.e., the developer comprehends a chunk of discrete behavior in

one snippet before moving on to consider the next snippet. This is similar to the way in which our

participants traced entire mutant programs (P5, P8) or, like students in the BranchCov condition,

limited their tracing to the basic block in which the mutant appeared (P2, P11, P12).

[In Rainfall] So if it was... rain_day is the thing, the element of the list. So if

rain_day is greater than 0, it should run. But if it’s greater than 1, it wouldn’t. Yeah,

I’m trying to like run through what the code is doing I guess. (P2)

Inputs for tracing tended to be chosen based on boundary values (commonly in terms of the

input data type, but sometimes in terms of the input domain). For example, in Rainfall, the line

if rain_day >= 0 is mutated to if rain_day >= 1 . One participant (P3) guessed that the

mutant would be killed by a test case that included the value 1 , but struggled to verbalize why in

terms of the problem description.

Satisfying BranchCov. In another common strategy, participants resorted to simply satisfying

BranchCov for conditional statements where mutants appeared. They reported a “feeling” that

executing all branches of the original program would likely kill surviving mutants appearing in

conditional statements (P2, P3, P4, P6, P7, P8, P9, P10, P11).

[In Rainfall] So I was wondering [about] this bug and I realized that I hadn’t tested

1, even though I said it was a special number you know, in my opinion. So I was like, oh

yeah, I should just try it. (P2)

Since mutation analysis subsumes branch coverage [53], this was not expected to be a sound

strategy. However, the heuristic appeared to be fruitful. Half of the surviving mutants in NoFeed-

back and BranchCov sessions were relational operator replacements (e.g., > is replacedwith >=).

Other types of mutants targeting control flow (like Logical Connector Replacement
3
, Conditional

2
The interviewer manually pointed out equivalent mutants and asked the participants to ignore them.

3
E.g., and is replaced with or .

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2023.

A Model of How Students Engineer Test Cases With Feedback 1:15

Operator Insertion
4
and One Iteration Loop

5
) were killed in the BranchCov sessions, but not

in the NoFeedback sessions. It appears that satisfying BranchCov in general may lead to the

killing of a substantial number of mutants that target control flow constructs. This has implications

for reducing the computational and cognitive cost of mutation-based testing feedback.

Ignoring mutants. Others implicitly relied on a similar strategy (P5, P7). They did not click to see

the mutated source code, but instead relied on the presence of mutants (i.e., bug badges in Figure 1)

to guide their intuition-based testing efforts.

[In Triangle] OK, I think they just want me to check for each side. This [hovers over

bug badges appearing over an if statement] basically just means I think that like it

doesn’t really matter like what’s coming out of here, so I should probably like actually test

something that will check that [condition]. (P6)

Almost like a form of structural testing like code coverage, the presence of mutants indicated

to these participants that those parts of the program were not “tested enough”. This is similar in

spirit to the “heat maps” proposed by Edmison & Edwards [21, 22] which use a combination of

instructor-written tests and branch coverage from the student’s own tests to highlight “suspicious”

(untested) portions of the student’s code.

Another participant took this dismissal of MutationCov feedback further and simply ignored it

until their own testing methods did not kill any more mutants (P9). As with BranchCov, only one

student (P1) demonstrated any significant task-level thinking when understanding and responding

to MutationCov feedback.

4.3 Other patterns

We noticed some general trends that were not exclusive to any single feedback mechanism.

Every participant wrote at least one basic, easy-to-reason-about test, often as the first test in their

suites. While some of these tests were written to meet an adequacy criterion or to better understand

the program, most often they were “happy path” tests that only simulated typical program inputs.

Since Muttle does not display any testing feedback at first, some participants (P1, P2, P6, P7,

P9) would start by generating initial test adequacy feedback by writing one or two simple tests.

After receiving initial feedback, participants would proceed to focus on achieving a complete test

adequacy score and would not rely on their own test-writing habits until afterward (P1, P2, P7, P9).

Some students (P1, P3, P5, P11) mentioned wanting to “put the code through the most paces”.

This sentiment took on different meanings in different contexts. Sometimes the participant wanted

to assure themselves that a test suite would reach all lines in the program before executing their

tests and receiving feedback.

Also common was the practice of copying and editing an existing test case instead of writing

new ones, allowing the participant to incrementally build up their test suite’s (branch or mutation)

coverage (P1, P2, P3, P5, P6, P7, P8, P9, P10, P11). This was also observed by Aniche et al. [5].

Some participants (P2, P5, P6, P7, P12) mentioned that they preferred to write tests based on

the problem descriptions rather than source code, but only 3 actually put this into practice (P5,

P7, P12). P5 in particular mostly ignored the source code and all forms of testing feedback during

their session, and achieved high coverage in both the BranchCov and MutationCov conditions

based solely on their understanding of the problem description.

Finally, virtually no students returned to considering the problem description or requirements

after any testing feedback was generated. That is, once initial testing feedback appeared, meeting

the criterion became the primary “testing goal”.

4
A conditional expression is negated using the not operator.

5
A break is added at the end of a for loop, causing it to terminate after one iteration.

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:16 A. M. Shin & A. M. Kazerouni

5 TEST-WRITING PROCESS MODEL

Fig. 2. A process model (§5) for how novices write software tests while being guided by a test adequacy

criterion.

We synthesize our results into a process model describing how relative novice programmers

create test suites for a given piece of code while being guided by a test adequacy criterion. Note

that this is a descriptive model rather than a prescriptive one. Some aspects may represent imperfect

testing strategies, or there may be steps missing in the model that we want to see in students’

testing strategies. Identifying these aspects and addressing them through targeted instruction is

therefore a worthwhile goal. For example, feedback from mutation analysis and code coverage did

not appear to influence or be influenced by problem comprehension.

The model draws heavily from concepts defined by Aniche et al. [5] (summarized in §2.3), with

the following changes:

• Where the model in [5] refers to a “mental model”, we refer to program and problem compre-

hension, to better contextualize the model with existing computing education literature.

• We do not distinguish between the act of choosing test cases and writing test code, since

tests in the Muttle interface are simply denoted as input-output pairs (§3.1).

• We include an additional focus on the specific adequacy criterion used by the tester, drawing

parallels and differences between testing with BranchCov and MutationCov.

The model is summarized in Figure 2 and described below.

Problem and program comprehension strategies and abilities appear to be intricately

tied to students’ abilities to devise useful test cases (§4.1). Students would begin their test

writing process by forming an initial understanding of the problem and program. They often began

by studying the program, using the problem description to address confusions if they arose. In some

cases, the student’s background knowledge also influenced their understanding of the problem.

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2023.

A Model of How Students Engineer Test Cases With Feedback 1:17

Difficulties with comprehension typically led to difficulties with testing, echoing findings from

Aniche et al. [5] and Bai et al. [7].

After achieving an initial understanding of the problem and program, the student writes

an initial set of tests before any feedback is produced (§4.1, §4.2.1). These test cases were

chosen based on the students’ intuitions and experiences. They chose inputs representing boundary

values, citing past experiences with automated assessment tools that tested their submissions using

similar inputs (empty lists, zero, negative numbers). Initial tests also tended to be based on problem

and program “beacons”. With no hints about what to test first, students were drawn to testing

prominent portions of the problem description or program. Occasionally, students would mentally

simulate branch-coverage while considering inputs, citing prior experience with the criterion. If

any of these initial tests failed, the student would re-evaluate their understanding of the problem

and program.

With an initial set of tests in hand, the student receives feedback based on a test adequacy

criterion, and may attempt to devise test cases to satisfy the rest of the criterion (§4.2.2,

§4.2.3). In both the BranchCov and MutationCov conditions, they turned to well-known code

comprehension strategies (like variable roles [57] or identifying beacons [15]) while selecting test

cases. They would manage the cognitive load associated with program comprehension (particularly

in the context of achieving branch or mutation coverage) by focusing on slices of the program, i.e.,

basic blocks. Occasionally, the student chooses to ignore the provided feedback in favor of testing

based on what they perceive to be “edge cases”.

The student “falls back” to a weaker criterion when satisfying a strong criterion is

difficult (§4.2.3). Achieving 100% mutation coverage proved to be a difficult task for many students.

Identifying an input to kill a mutant requires maintaining a parallel understanding of the original

program and the mutant program, and identifying where their executions diverge. This is a high-

cognitive-load activity that at times appeared to overwhelm students’ working memory. When this

happened, the students employed the code comprehension strategies described above. When those

did not help, they resorted to heuristically addressing a weaker test adequacy criterion in the hope

that the resulting test suite would also address the stronger criterion. This strategy was sometimes

useful.

Occasionally, students continued to add to their test suites even after the test adequacy

criterion was met, writing tests that had no effect on the test suite’s (branch or mutation)

coverage (§4.3). They would use (what they believed to be) pathological values for the input data

type, even if the values did not represent unexplored equivalence partitions in the problem space.

That is, it appeared that they were testing with these values as a reflex, and not due to any reasoning

about the properties of the program or problem. This occurred more often in the BranchCov

condition than the MutationCov condition.

6 THREATS TO VALIDITY

We discuss possible threats to validity [13] and their mitigations where appropriate.

Internal validity. For all subjects, the interview session was their first encounter with mutation-

based feedback. This possibly contributed to their challenges with designing test cases to kill

certain mutants (§4.2.3). To manage this, each interview included an explanation of mutation

analysis feedback followed by a “warm-up” problem on which participants demonstrated their

understanding of the general idea. Students generally grasped the idea behind mutation analysis,

but tended to be challenged by specific mutants.

Additionally, students were presented with testing feedback using a custom interface that was

purpose-built for this research (Figure 1). It is unlikely that students’ responses to feedback were

affected by this interface. Branch coverage was presented in a form common to many IDEs (§3.1),

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:18 A. M. Shin & A. M. Kazerouni

and since students were familiar with the criterion and had used it in their IDEs previously, we do

not believe this to be a significant threat to the validity of our findings. On the other hand, we used

a novel method for presenting mutation-based feedback. Most tools for mutation analysis provide

primarily command-line interfaces, with little support for in-editor feedback. Feedback presentation

in Muttle represents a step toward improved graphical representations for mutation-based test

quality feedback.

It is improbable that students’ challenges with mutation-based feedback were induced by the

interface, for three reasons. First, we conducted pilot interviews to get initial feedback on the

interface and to test-run our chosen testing tasks. No issues with the interface arose. Second, during

the 12 interviews conducted for this study (not including the pilot interviews), participants were

given warm-up problems to learn the interface. Further, they were able to detect some mutants

while facing challenges with others, suggesting that challenges had more to do with the mutants

themselves than the interface. Finally, since mutation-feedback in Muttle is presented as simple

line-level diffs, we do not believe a user study would have been necessary or informative.

Ecological validity. In the NoFeedback condition, two participants (P3 and P4) mentioned that

they were putting in more effort while testing because they were participating in a study about

testing (e.g., P4 said “Honestly, if I were doing my homework, I would not do this, it’s just for this”).

While the number of tests produced may have been influenced by the presence of the interviewer,

the participant still verbalized their thought process and provided data about how they ended up

choosing those test cases, which was ultimately our objective in this study.

External validity. Like any study involving human subjects, our study suffers from threats to

external validity. Our study involved participants in a specific context—students in their third

programming course testing Python programs. Moreover, students self-selected into this study

after announcements were made in person in classrooms. As mentioned in §3.2, students came

from a range of expertise levels (based on their performance in the previous CS course). Additional

studies involving students with different backgrounds using different programming languages

would help test the generalizability of these results.

Content validity. Though we have a relatively small sample size, we have reason to believe that

additional interviews would not have revealed new information (at least, not without other changes

to the study like the student population or the problems studied). As can be seen in §4, all themes

occurred for a number of participants, suggesting that our analyses were not revealing one-off

occurrences. Incidents in §4 pertaining to a single participant occurred early in the interview

process. That is, after a point, analysis of subsequent interviews only revealed themes we had

already seen in previous interviews.

Face validity. We have provided illustrative quotes and incidents for the themes revealed in our

analysis.

Conclusion validity. As discussed in Section 3.4, our interpretations of students’ words and

actions are inevitably entangled with our experiences and perspectives. We have attempted to

mitigate this threat by grounding our analyses and interpretations in existing literature where

possible, consistent with the Straussian strand of grounded theory [62].

7 DISCUSSION

7.1 Implications for pedagogy of software testing

There are numerous purposes for writing automated software tests, but two are prominent. First,

to verify that a given program (or soon-to-be-written program) meets its requirements. Second, to

capture the functionality of a program so that future regressions may be detected and avoided.

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2023.

A Model of How Students Engineer Test Cases With Feedback 1:19

In educational contexts other than immersive software engineering education experiences, there

is little opportunity to demonstrate the second purpose due to the short development timelines and

unchanging requirements that are typical of pedagogic programming assignments. Therefore, in

fundamental programming courses that teach testing, we tend to emphasize the first purpose.

In this context, we ought to consider the role that we want test adequacy criteria to play in testing

instruction. In our interviews, we did not observe any students returning to the problem requirements

after they started trying to address the test adequacy criterion (though 3 out of 12 students had

already produced strong test suites based on the problem requirements; §4.3). That is, once any

testing feedback appeared, satisfying the criterion became the student’s “testing goal”. They focused

on maximizing execution coverage of the program (in the case of branch coverage) or distinguishing

the program semantically from other programs (in the case of mutation analysis).

Indeed, this is how students are often encouraged to judge the quality of their own tests in many

programming courses. They are incentivized to satisfy test adequacy criteria by having part of

their assignment grade depend on the strength of their tests (e.g., [1, 11, 43, 61]). As such, they

are implicitly encouraged to incorporate criteria like branch coverage or mutation analysis into

their workflows. Importantly, these criteria are based on the implementation at hand, and not on

the specification it purports to implement. This can perhaps lead to skewed motivations when

composing test suites or test plans.

For example, in a study of students’ perceptions of test suites, Bai et al. [7] found that code

coverage was commonly rated as an important characteristic to be aware of when writing new

unit tests. Aniche et al. [5] report that developers did not tend to consider the program description

(documentation) while reasoning about test adequacy, preferring to reason about code coverage

and their own source and test code. In our own observations, multiple students reported designing

their tests based on predicted branch coverage, even when no such feedback was available. This

tendency to think from an “implementation-first” perspective can appear even in the absence of

an implementation. Doorn et al. studied the test models created by graduate students who were

tasked with testing a single problem [20] (without an available implementation). They reported a

common “development approach” in which students thought about their test plan in terms of how

they would go about implementing their solutions. As a result, they applied common programming

restrictions to their test models (e.g., reducing duplication), but most still failed to adequately cover

the problem space.

If the goal of writing tests is to prevent future regressions, perhaps this focus on a given

implementation is acceptable. But if the goal is to verify that a program (or a soon-to-be-written

program) meets its requirements, then we would rather that students reason about test adequacy in

terms of problem coverage as opposed to program coverage. This is a key idea behind property-based

testing [10], which Wrenn et al. describe as a potential “Trojan horse” for introducing students to

writing specifications [68].

Others have used feedback mechanisms that are not primarily driven by implementation-based

test adequacy criteria like branch coverage or mutation analysis. Cordova et al. [14] explored

conceptual feedback that tells the student about instructor-defined “fundamental testing concepts”

(e.g., boundary values [14]) that their test suite fails to cover. In a quasi-experiment, they found

that, students who were trained with conceptual feedback performed better at testing tasks than

those who were trained with feedback based on line and branch coverage.

As another example, consider the all-pairs approach described in §2.2 [26, 30, 67], found to be a

reliable measure of a test suite’s fault-finding capability [25]. A key strength of the approach is that

the test suite’s thoroughness is evaluated against faulty implementations (“mutants”) that represent

real bugs, i.e., mistakes that students have actually made, either through a mis- or incomplete

understanding of the problem or through programming errors. This is in contrast to the mutants

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:20 A. M. Shin & A. M. Kazerouni

generated by common mutation operators, which may not be faulty in similarly interesting ways.

Wrenn et al. [66] have explored this observation further and developed Examplar, a tool that allows

students to explore a problem space through test cases, using “mutants” that have been created by

course staff to represent “conceptually interesting corners” of problems [65].

We do not argue that we should do away entirely with testing feedback based on adequacy

criteria. We must, however, make it much more explicit to students where in their testing process

these adequacy criteria ought to be incorporated. Specifically, we should encourage a “requirements-

first” testing approach, as opposed to an “implementation-first” approach. That is, we want to

teach students how to decompose a problem into the requirements that a correct solution would

satisfy, and then to write tests that target those requirements. After this process, gaps noted by

implementation-based test adequacy criteria (i.e., gaps in branch or mutation coverage) can help

further strengthen the test suite [3].

We explicitly delineate this argument from calls to teach TDD. An “implementation-first” testing

mindset can still occur during TDD; the study by Doorn et al. [20] suggests that students are

still likely to design tests with a particular implementation in mind, whether or not such an

implementation exists yet.

7.2 Future Work

This study raises the following directions for future work.

Are some mutation operators (or subsets of mutation operators) less cognitively taxing

than others?What influences this load?We observed that students found it particularly difficult

to kill mutants that appeared on lines with branching logic (e.g., if conditions or conditionals in

for loops). Reasoning about logical branches and mutants simultaneously seemed to overwhelm

their working memory. It seems likely that some mutation operators are less cognitively taxing

than others. For example, others have suggested that deletion mutation operators (operators that

work by simply deleting program constructs instead of making smaller, more subtle changes) may

be easier to reason about than comprehensive mutation analysis [16, 41]. As far as we are aware,

such claims have not been empirically tested.

How does feedback presentation affect the utility of mutation analysis in educational

or professional settings?While these can be useful, mutation analysis has not benefited from the

kinds of out-of-the-box IDE support and interfaces that code coverage tools enjoy. Current tools for

mutation analysis provide feedback as a written list of killed or surviving mutants, often printed to

the standard output stream. Feedback in Muttle (Figure 1) just one possible improvement to this

landscape. Further usability studies into different styles of presenting mutation-based feedback

would be beneficial for both academics and practitioners.

Are patterns of code-level and task-level thinking associated with software testing

success?We originally expected that when students were driven by mutation analysis, they would

engage in more task-level thinking [8] than code-level thinking. We did not find support for this

hypothesis. However, we observed that much of students’ success with identifying mutant-killing

inputs occurred when they were able to verbalize using a high-level description the difference

between the mutant and the original program (i.e., a task-level plan).

What types of mutants tend to survive test suites that satisfy weaker test adequacy

criteria? Much has been written about reducing the computational cost of mutation analysis.

A popular approach is selective mutation analysis, which limits the number of mutants that are

produced by strategically choosing mutation operators (e.g., [16, 41, 52, 60]). Qualitatively, we

noticed that simply satisfying BranchCov resulted in also satisfying mutation operators that

target control flow constructs. If we can empirically identify the types of mutants that tend to slip

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2023.

A Model of How Students Engineer Test Cases With Feedback 1:21

through weaker test adequacy criteria, we can reduce both the computational and cognitive cost of

mutation analysis by only generating those mutants. As educators, we can also use this information

to better direct students’ testing efforts.

ACKNOWLEDGMENTS

This work was supported in part by the Baker/Koob endowments at California Polytechnic State

University. The authors are grateful to the anonymous peer reviewers at TOCE and ICER 2023, as

well as Dr. J. Davis, Dr. A. Keen, and Dr. S. Beard for critiquing early drafts of this paper; and to Jon

Lai for his initial engineering contributions.

REFERENCES

[1] Kalle Aaltonen, Petri Ihantola, and Otto Seppälä. 2010. Mutation Analysis vs. Code Coverage in Automated Assess-

ment of Students’ Testing Skills. In Proceedings of the ACM International Conference Companion on Object Oriented

Programming Systems Languages and Applications Companion (Reno/Tahoe, Nevada, USA) (OOPSLA ’10). Association

for Computing Machinery, New York, NY, USA, 153–160. https://doi.org/10.1145/1869542.1869567

[2] P. Ammann and J. Offutt. 2008. Introduction to Software Testing. Cambridge University Press. https://books.google.

com/books?id=BMbaAAAAMAAJ

[3] Maurício Aniche. 2022. Effective Software Testing: A Developer’s Guide. Manning, Shelter Island, NY.

[4] Maurício Aniche, Felienne Hermans, and Arie van Deursen. 2019. Pragmatic Software Testing Education. In Proceedings

of the 50th ACM Technical Symposium on Computer Science Education (SIGCSE ’19). ACM, New York, NY, USA, 414–420.

https://doi.org/10.1145/3287324.3287461

[5] Maurício Aniche, Christoph Treude, and Andy Zaidman. 2021. How Developers Engineer Test Cases: An Observational

Study. IEEE Transactions on Software Engineering (2021). https://doi.org/10.1109/TSE.2021.3129889

[6] CS Learning 4 U Group at The University of Michigan. 2015. 16.9 — Rainfall Problem—AP CS Principles — Student Edition.

https://runestone.academy/ns/books/published/StudentCSP/CSPIntroData/rainfall.html Accessed on September 30,

2023.

[7] Gina R. Bai, Justin Smith, and Kathryn T. Stolee. 2021. How Students Unit Test: Perceptions, Practices, and Pitfalls. In

Proceedings of the 26th ACM Conference on Innovation and Technology in Computer Science Education V. 1 (Virtual Event,

Germany) (ITiCSE ’21). Association for Computing Machinery, New York, NY, USA, 248–254. https://doi.org/10.1145/

3430665.3456368

[8] F. E. V. Castro and K. Fisler. 2020. Qualitative Analyses of Movements Between Task-Level and Code-Level Thinking of

Novice Programmers. In Proceedings of the 51st ACM Technical Symposium on Computer Science Education. Association

for Computing Machinery, New York, NY, USA, 487–493. https://doi.org/10.1145/3328778.3366847

[9] Y. Chun Tie, M. Birks, and K. Francis. 2019. Grounded theory research: A design framework for novice

researchers. SAGE Open Medicine 7 (2019), 2050312118822927. https://doi.org/10.1177/2050312118822927

arXiv:https://doi.org/10.1177/2050312118822927 PMID: 30637106.

[10] Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool for Random Testing of Haskell Programs.

SIGPLAN Not. 35, 9 (sep 2000), 268–279. https://doi.org/10.1145/357766.351266

[11] Peter J. Clarke, Debra Davis, Tariq M. King, Jairo Pava, and Edward L. Jones. 2014. Integrating Testing into Software

Engineering Courses Supported by a Collaborative Learning Environment. ACM Trans. Comput. Educ. 14, 3, Article 18

(oct 2014), 33 pages. https://doi.org/10.1145/2648787

[12] Peter J. Clarke, Debra L. Davis, Raymond Chang-Lau, and Tariq M. King. 2017. Impact of Using Tools in an Undergrad-

uate Software Testing Course Supported by WReSTT. ACM Trans. Comput. Educ. 17, 4, Article 18 (aug 2017), 28 pages.

https://doi.org/10.1145/3068324

[13] Thomas D Cook, Donald Thomas Campbell, and Arles Day. 1979. Quasi-experimentation: Design & analysis issues for

field settings. Vol. 351. Houghton Mifflin Boston.

[14] Lucas Cordova, Jeffrey Carver, Noah Gershmel, and GursimranWalia. 2021. A Comparison of Inquiry-Based Conceptual

Feedback vs. Traditional Detailed Feedback Mechanisms in Software Testing Education: An Empirical Investigation. In

Proceedings of the 52nd ACM Technical Symposium on Computer Science Education (Virtual Event, USA) (SIGCSE ’21).

Association for Computing Machinery, New York, NY, USA, 87–93. https://doi.org/10.1145/3408877.3432417

[15] Martha E Crosby, Jean Scholtz, and Susan Wiedenbeck. 2002. The Roles Beacons Play in Comprehension for Novice

and Expert Programmers.. In PPIG. 5.

[16] M. E. Delamaro, J. Offutt, and P. Ammann. 2014. Designing Deletion Mutation Operators. In 2014 IEEE Seventh

International Conference on Software Testing, Verification and Validation. IEEE, 11–20. https://doi.org/10.1109/ICST.

2014.12

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://doi.org/10.1145/1869542.1869567
https://books.google.com/books?id=BMbaAAAAMAAJ
https://books.google.com/books?id=BMbaAAAAMAAJ
https://doi.org/10.1145/3287324.3287461
https://doi.org/10.1109/TSE.2021.3129889
https://runestone.academy/ns/books/published/StudentCSP/CSPIntroData/rainfall.html
https://doi.org/10.1145/3430665.3456368
https://doi.org/10.1145/3430665.3456368
https://doi.org/10.1145/3328778.3366847
https://doi.org/10.1177/2050312118822927
https://arxiv.org/abs/https://doi.org/10.1177/2050312118822927
https://doi.org/10.1145/357766.351266
https://doi.org/10.1145/2648787
https://doi.org/10.1145/3068324
https://doi.org/10.1145/3408877.3432417
https://doi.org/10.1109/ICST.2014.12
https://doi.org/10.1109/ICST.2014.12

1:22 A. M. Shin & A. M. Kazerouni

[17] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. 1978. Hints on Test Data Selection: Help for the Practicing Programmer.

Computer 11, 4 (April 1978), 34–41. https://doi.org/10.1109/C-M.1978.218136

[18] A. Derezińska and K. Hałas. 2014. Analysis of Mutation Operators for the Python Language. In Proceedings of the

Ninth International Conference on Dependability and Complex Systems DepCoS-RELCOMEX. June 30 – July 4, 2014,

Brunów, Poland, W. Zamojski, J. Mazurkiewicz, J. Sugier, T. Walkowiak, and J. Kacprzyk (Eds.). Springer International

Publishing, Cham, 155–164.

[19] Niels Doorn, Tanja Vos, Beatriz Marín, and Erik Barendsen. 2023. Set the right example when teaching programming:

Test Informed Learning with Examples (TILE). In 2023 IEEE Conference on Software Testing, Verification and Validation

(ICST). 269–280. https://doi.org/10.1109/ICST57152.2023.00033

[20] Niels Doorn, Tanja E. J. Vos, Beatriz Marín, Harrie Passier, Lex Bijlsma, and Silvio Cacace. 2021. Exploring students’

sensemaking of test case design. An initial study. In 2021 IEEE 21st International Conference on Software Quality,

Reliability and Security Companion (QRS-C). 1069–1078. https://doi.org/10.1109/QRS-C55045.2021.00161

[21] Bob Edmison and Stephen H. Edwards. 2019. Experiences Using Heat Maps to Help Students Find Their Bugs: Problems

and Solutions. In Proceedings of the 50th ACM Technical Symposium on Computer Science Education (Minneapolis, MN,

USA) (SIGCSE ’19). Association for Computing Machinery, New York, NY, USA, 260–266. https://doi.org/10.1145/

3287324.3287474

[22] Bob Edmison and Stephen H. Edwards. 2020. Turn up the Heat! Using Heat Maps to Visualize Suspicious Code to

Help Students Successfully Complete Programming Problems Faster. In Proceedings of the ACM/IEEE 42nd International

Conference on Software Engineering: Software Engineering Education and Training (Seoul, South Korea) (ICSE-SEET ’20).

Association for Computing Machinery, New York, NY, USA, 34–44. https://doi.org/10.1145/3377814.3381707

[23] Stephen H. Edwards. 2004. Using software testing to move students from trial-and-error to reflection-in-action. ACM

SIGCSE Bulletin 36, 1 (March 2004), 26. https://doi.org/10.1145/1028174.971312

[24] Stephen H. Edwards and Zalia Shams. 2014. Comparing Test Quality Measures for Assessing Student-written Tests. In

Companion Proceedings of the 36th International Conference on Software Engineering (ICSE Companion 2014). ACM, New

York, NY, USA, 354–363. https://doi.org/10.1145/2591062.2591164

[25] Stephen H. Edwards and Zalia Shams. 2014. Comparing Test Quality Measures for Assessing Student-Written Tests. In

Companion Proceedings of the 36th International Conference on Software Engineering (Hyderabad, India) (ICSE Companion

2014). Association for Computing Machinery, New York, NY, USA, 354–363. https://doi.org/10.1145/2591062.2591164

[26] Stephen H. Edwards, Zalia Shams, Michael Cogswell, and Robert C. Senkbeil. 2012. Running Students’ Software Tests

against Each Others’ Code: New Life for an Old “Gimmick”. In Proceedings of the 43rd ACM Technical Symposium on

Computer Science Education (Raleigh, North Carolina, USA) (SIGCSE ’12). Association for Computing Machinery, New

York, NY, USA, 221–226. https://doi.org/10.1145/2157136.2157202

[27] Eduard Enoiu and Robert Feldt. 2021. Towards Human-Like Automated Test Generation: Perspectives from Cognition

and Problem Solving. In 2021 IEEE/ACM 13th International Workshop on Cooperative and Human Aspects of Software

Engineering (CHASE). 123–124. https://doi.org/10.1109/CHASE52884.2021.00026

[28] Eduard Enoiu, Gerald Tukseferi, and Robert Feldt. 2020. Towards a Model of Testers’ Cognitive Processes: Software

Testing as a Problem Solving Approach. In 2020 IEEE 20th International Conference on Software Quality, Reliability and

Security Companion (QRS-C). 272–279. https://doi.org/10.1109/QRS-C51114.2020.00053

[29] B. G. Glaser and A. L. Strauss. 1967. The Discovery of Grounded Theory: Strategies for Qualitative Research. Aldine.

[30] Michael H. Goldwasser. 2002. A Gimmick to Integrate Software Testing throughout the Curriculum. SIGCSE Bull. 34, 1

(Feb 2002), 271–275. https://doi.org/10.1145/563517.563446

[31] John B. Goodenough and Susan L. Gerhart. 1975. Toward a theory of test data selection. IEEE Transactions on Software

Engineering SE-1, 2 (1975), 156–173. https://doi.org/10.1109/TSE.1975.6312836

[32] Rahul Gopinath, Carlos Jensen, and Alex Groce. 2014. Mutations: How Close are they to Real Faults?. In 2014 IEEE 25th

International Symposium on Software Reliability Engineering. 189–200. https://doi.org/10.1109/ISSRE.2014.40

[33] Braxton Hall and Elisa Baniassad. 2022. Evaluating the Quality of Student-Written Software Tests with Curated

Mutation Analysis. In Proceedings of the 2022 ACM SIGPLAN International Symposium on SPLASH-E (Auckland, New

Zealand) (SPLASH-E 2022). Association for Computing Machinery, New York, NY, USA, 24–34. https://doi.org/10.

1145/3563767.3568132

[34] Hadi Hemmati. 2015. How Effective Are Code Coverage Criteria?. In 2015 IEEE International Conference on Software

Quality, Reliability and Security. 151–156. https://doi.org/10.1109/QRS.2015.30

[35] Joy W. Hollén and Patrick S. Zacarias. 2013. Exploring Code Coverage in Software Testing and its Correlation with

Software Quality; A Systematic Literature Review. Bachelor’s Thesis. University of Gothenburg, 405 30 Gothenburg,

Sweden.

[36] Laura Inozemtseva and Reid Holmes. 2014. Coverage is Not Strongly Correlated with Test Suite Effectiveness. In

Proceedings of the 36th International Conference on Software Engineering (ICSE 2014). ACM, New York, NY, USA, 435–445.

https://doi.org/10.1145/2568225.2568271

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://doi.org/10.1109/C-M.1978.218136
https://doi.org/10.1109/ICST57152.2023.00033
https://doi.org/10.1109/QRS-C55045.2021.00161
https://doi.org/10.1145/3287324.3287474
https://doi.org/10.1145/3287324.3287474
https://doi.org/10.1145/3377814.3381707
https://doi.org/10.1145/1028174.971312
https://doi.org/10.1145/2591062.2591164
https://doi.org/10.1145/2591062.2591164
https://doi.org/10.1145/2157136.2157202
https://doi.org/10.1109/CHASE52884.2021.00026
https://doi.org/10.1109/QRS-C51114.2020.00053
https://doi.org/10.1145/563517.563446
https://doi.org/10.1109/TSE.1975.6312836
https://doi.org/10.1109/ISSRE.2014.40
https://doi.org/10.1145/3563767.3568132
https://doi.org/10.1145/3563767.3568132
https://doi.org/10.1109/QRS.2015.30
https://doi.org/10.1145/2568225.2568271

A Model of How Students Engineer Test Cases With Feedback 1:23

[37] David Janzen and Hossein Saiedian. 2008. Test-Driven Learning in Early Programming Courses. SIGCSE Bull. 40, 1

(mar 2008), 532–536. https://doi.org/10.1145/1352322.1352315

[38] Edward L. Jones. 2000. Software Testing in the Computer Science Curriculum – a Holistic Approach. In Proceedings

of the Australasian Conference on Computing Education (ACSE ’00). ACM, New York, NY, USA, 153–157. https:

//doi.org/10.1145/359369.359392

[39] René Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid Holmes, and Gordon Fraser. 2014. Are Mutants a

Valid Substitute for Real Faults in Software Testing?. In Proceedings of the 22nd ACM SIGSOFT International Symposium

on Foundations of Software Engineering (Hong Kong, China) (FSE 2014). Association for Computing Machinery, New

York, NY, USA, 654–665. https://doi.org/10.1145/2635868.2635929

[40] Stuart A. Karabenick. 2004. Perceived Achievement Goal Structure and College Student Help Seeking. Journal of

Educational Psychology 96, 3 (2004), 569–581. https://doi.org/10.1037/0022-0663.96.3.569

[41] Ayaan M. Kazerouni, James C. Davis, Arinjoy Basak, Clifford A. Shaffer, Francisco Servant, and Stephen H. Edwards.

2021. Fast and accurate incremental feedback for students’ software tests using selective mutation analysis. Journal of

Systems and Software 175 (2021), 110905. https://doi.org/10.1016/j.jss.2021.110905

[42] AyaanM. Kazerouni, StephenH. Edwards, and Clifford A. Shaffer. 2017. Quantifying Incremental Development Practices

and Their Relationship to Procrastination. In Proceedings of the 2017 ACM Conference on International Computing

Education Research (Tacoma, Washington, USA) (ICER ’17). Association for Computing Machinery, New York, NY, USA,

191–199. https://doi.org/10.1145/3105726.3106180

[43] Ayaan M. Kazerouni, Clifford A. Shaffer, Stephen H. Edwards, and Francisco Servant. 2019. Assessing Incremental

Testing Practices and Their Impact on Project Outcomes. In Proceedings of the 50th ACM Technical Symposium on

Computer Science Education (Minneapolis, MN, USA) (SIGCSE ’19). Association for Computing Machinery, New York,

NY, USA, 407–413. https://doi.org/10.1145/3287324.3287366

[44] K. N. King and A. Jefferson Offutt. 1991. A fortran language system for mutation-based software testing.

Journal of Software: Practice and Experience 21, 7 (1991), 685–718. https://doi.org/10.1002/spe.4380210704

arXiv:https://doi.org/10.1002/spe.4380210704

[45] Marinos Kintis, Mike Papadakis, Andreas Papadopoulos, Evangelos Valvis, and Nicos Malevris. 2016. Analysing and

Comparing the Effectiveness of Mutation Testing Tools: A Manual Study. In 2016 IEEE 16th International Working

Conference on Source Code Analysis and Manipulation (SCAM). 147–156. https://doi.org/10.1109/SCAM.2016.28

[46] Pavneet Singh Kochhar, Ferdian Thung, and David Lo. 2015. Code coverage and test suite effectiveness: Empirical

study with real bugs in large systems. In 2015 IEEE 22nd International Conference on Software Analysis, Evolution, and

Reengineering (SANER). 560–564. https://doi.org/10.1109/SANER.2015.7081877

[47] Holger Krekel, Bruno Oliveira, Ronny Pfannschmidt, Floris Bruynooghe, Brianna Laugher, and Florian Bruhin. 2004.

pytest 6.2.2. https://github.com/pytest-dev/pytest

[48] Lech Madeyski, Wojciech Orzeszyna, Richard Torkar, and Mariusz Józala. 2014. Overcoming the Equivalent Mutant

Problem: A Systematic Literature Review and a Comparative Experiment of Second Order Mutation. IEEE Transactions

on Software Engineering 40, 1 (2014), 23–42. https://doi.org/10.1109/TSE.2013.44

[49] Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne Hagan, Yifat Ben-David Kolikant, Cary

Laxer, Lynda Thomas, Ian Utting, and Tadeusz Wilusz. 2001. A Multi-National, Multi-Institutional Study of Assessment

of Programming Skills of First-Year CS Students. In Working Group Reports from ITiCSE on Innovation and Technology

in Computer Science Education (Canterbury, UK) (ITiCSE-WGR ’01). Association for Computing Machinery, New York,

NY, USA, 125–180. https://doi.org/10.1145/572133.572137

[50] Justin Middleton and Kathryn T. Stolee. 2022. Understanding Similar Code through Comparative Comprehension. In

2022 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC). 1–11. https://doi.org/10.1109/VL/

HCC53370.2022.9833117

[51] Glenford J. Myers, Corey Sandler, and Tom Badgett. 2012. The art of software testing (3rd ed ed.). John Wiley & Sons,

Hoboken and N.J.

[52] A. Jefferson Offutt, Ammei Lee, Gregg Rothermel, Roland H. Untch, and Christian Zapf. 1996. An Experimental

Determination of Sufficient Mutant Operators. ACM Trans. Softw. Eng. Methodol. 5, 2 (April 1996), 99–118. https:

//doi.org/10.1145/227607.227610

[53] A. J. Offutt and J. M. Voas. 1996. Subsumption of Condition Coverage Techniques by Mutation Testing.

[54] Nancy Pennington. 1987. Stimulus structures and mental representations in expert comprehension of computer

programs. Cognitive Psychology 19, 3 (1987), 295–341. https://doi.org/10.1016/0010-0285(87)90007-7

[55] Goran Petrović, Marko Ivanković, Gordon Fraser, and René Just. 2021. Does Mutation Testing Improve Testing

Practices?. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). 910–921. https://doi.org/10.

1109/ICSE43902.2021.00087

[56] James Prather, Raymond Pettit, Brett A. Becker, Paul Denny, Dastyni Loksa, Alani Peters, Zachary Albrecht, and Krista

Masci. 2019. First Things First: Providing Metacognitive Scaffolding for Interpreting Problem Prompts. In Proceedings

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://doi.org/10.1145/1352322.1352315
https://doi.org/10.1145/359369.359392
https://doi.org/10.1145/359369.359392
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1037/0022-0663.96.3.569
https://doi.org/10.1016/j.jss.2021.110905
https://doi.org/10.1145/3105726.3106180
https://doi.org/10.1145/3287324.3287366
https://doi.org/10.1002/spe.4380210704
https://arxiv.org/abs/https://doi.org/10.1002/spe.4380210704
https://doi.org/10.1109/SCAM.2016.28
https://doi.org/10.1109/SANER.2015.7081877
https://github.com/pytest-dev/pytest
https://doi.org/10.1109/TSE.2013.44
https://doi.org/10.1145/572133.572137
https://doi.org/10.1109/VL/HCC53370.2022.9833117
https://doi.org/10.1109/VL/HCC53370.2022.9833117
https://doi.org/10.1145/227607.227610
https://doi.org/10.1145/227607.227610
https://doi.org/10.1016/0010-0285(87)90007-7
https://doi.org/10.1109/ICSE43902.2021.00087
https://doi.org/10.1109/ICSE43902.2021.00087

1:24 A. M. Shin & A. M. Kazerouni

of the 50th ACM Technical Symposium on Computer Science Education (Minneapolis, MN, USA) (SIGCSE ’19). Association

for Computing Machinery, New York, NY, USA, 531–537. https://doi.org/10.1145/3287324.3287374

[57] J. Sajaniemi. 2002. An empirical analysis of roles of variables in novice-level procedural programs. In Proceedings IEEE

2002 Symposia on Human Centric Computing Languages and Environments. 37–39. https://doi.org/10.1109/HCC.2002.

1046340

[58] Jorma Sajaniemi and Marja Kuittinen. 2005. An Experiment on Using Roles of Variables in Teaching Introduc-

tory Programming. Computer Science Education 15, 1 (2005), 59–82. https://doi.org/10.1080/08993400500056563

arXiv:https://doi.org/10.1080/08993400500056563

[59] Lilian Passos Scatalon, Jeffrey C. Carver, Rogério Eduardo Garcia, and Ellen Francine Barbosa. 2019. Software Testing in

Introductory Programming Courses: A Systematic Mapping Study. In Proceedings of the 50th ACM Technical Symposium

on Computer Science Education (Minneapolis, MN, USA) (SIGCSE ’19). Association for Computing Machinery, New

York, NY, USA, 421–427. https://doi.org/10.1145/3287324.3287384

[60] Akbar Siami Namin, James H. Andrews, and Duncan J. Murdoch. 2008. Sufficient Mutation Operators for Measuring

Test Effectiveness. In Proceedings of the 30th International Conference on Software Engineering (ICSE ’08). ACM, New

York, NY, USA, 351–360. https://doi.org/10.1145/1368088.1368136

[61] Jaime Spacco and William Pugh. 2006. Helping Students Appreciate Test-Driven Development (TDD). In Companion

to the 21st ACM SIGPLAN Symposium on Object-Oriented Programming Systems, Languages, and Applications (Portland,

Oregon, USA) (OOPSLA ’06). Association for Computing Machinery, New York, NY, USA, 907–913. https://doi.org/10.

1145/1176617.1176743

[62] Anselm Strauss and Juliet M Corbin. 1997. Grounded theory in practice. Sage.

[63] Dávid Tengeri, László Vidács, Árpád Beszédes, Judit Jász, Gergõ Balogh, Béla Vancsics, and Tibor Gyimóthy. 2016.

Relating Code Coverage, Mutation Score and Test Suite Reducibility to Defect Density. In 2016 IEEE Ninth International

Conference on Software Testing, Verification and Validation Workshops (ICSTW). 174–179. https://doi.org/10.1109/

ICSTW.2016.25

[64] Jacqueline Whalley, Amber Settle, and Andrew Luxton-Reilly. 2023. A Think-Aloud Study of Novice Debugging. ACM

Trans. Comput. Educ. 23, 2, Article 28 (jun 2023), 38 pages. https://doi.org/10.1145/3589004

[65] JohnWrenn. 2022. Executable Examples: Empowering Students to Hone Their Problem Comprehension. Ph. D. Dissertation.

Brown University.

[66] John Wrenn and Shriram Krishnamurthi. 2019. Executable Examples for Programming Problem Comprehension. In

Proceedings of the 2019 ACM Conference on International Computing Education Research (Toronto ON, Canada) (ICER

’19). Association for Computing Machinery, New York, NY, USA, 131–139. https://doi.org/10.1145/3291279.3339416

[67] John Wrenn, Shriram Krishnamurthi, and Kathi Fisler. 2018. Who Tests the Testers?. In Proceedings of the 2018

ACM Conference on International Computing Education Research (ICER ’18). ACM, New York, NY, USA, 51–59. https:

//doi.org/10.1145/3230977.3230999

[68] John Wrenn, Tim Nelson, and Shriram Krishnamurthi. 2020. Using Relational Problems to Teach Property-Based

Testing. The Art, Science, and Engineering of Programming 5, 2 (oct 2020). https://doi.org/10.22152/programming-

journal.org/2021/5/9

A PROBLEMS USED IN TESTING TASKS

1 de f mu l t i p l y (a , b) :

2 r e t u r n a ∗ b

Listing 1. Multiply. A function that multiplies two provided numbers.

1 de f l a r g e r (f i r s t , second) :

2 i f f i r s t == second :

3 r e t u r n f i r s t

4

5 r e t u r n max (f i r s t , second)

Listing 2. Larger. Given two numbers, return the larger of the two. If the numbers are equal, return the

first number.

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://doi.org/10.1145/3287324.3287374
https://doi.org/10.1109/HCC.2002.1046340
https://doi.org/10.1109/HCC.2002.1046340
https://doi.org/10.1080/08993400500056563
https://arxiv.org/abs/https://doi.org/10.1080/08993400500056563
https://doi.org/10.1145/3287324.3287384
https://doi.org/10.1145/1368088.1368136
https://doi.org/10.1145/1176617.1176743
https://doi.org/10.1145/1176617.1176743
https://doi.org/10.1109/ICSTW.2016.25
https://doi.org/10.1109/ICSTW.2016.25
https://doi.org/10.1145/3589004
https://doi.org/10.1145/3291279.3339416
https://doi.org/10.1145/3230977.3230999
https://doi.org/10.1145/3230977.3230999
https://doi.org/10.22152/programming-journal.org/2021/5/9
https://doi.org/10.22152/programming-journal.org/2021/5/9

A Model of How Students Engineer Test Cases With Feedback 1:25

1 de f i s _ t r i a n g l e (s i d e1 , s i d e2 , s i d e 3) :

2 i f s i d e 1 >= s i d e 2 + s i d e 3 or \

3 s i d e 2 >= s i d e 1 + s i d e 3 or \

4 s i d e 3 >= s i d e 1 + s i d e 2 :

5

6 r e t u r n 0 # t h i s i s not a v a l i d t r i a n g l e

7

8 i f s i d e 1 == s i d e 2 and s i d e 2 == s i d e 3 :

9 r e t u r n 1

10

11 i f s i d e 1 == s i d e 2 or s i d e 1 == s i d e 3 or s i d e 2 == s i d e 3 :

12 r e t u r n 2

13

14 r e t u r n 3

Listing 3. Triangle. Given 3 numbers representing side lengths, determine whether the sides form a valid

triangle, and if so, what kind of triangle it forms. Return 0 if they form an invalid triangle (the sum of any

two sides is less than or equal to the third side), 1 if they form an equilateral triangle (all sides are the same

length), 2 if they form an isosceles triangle (two sides are the same length), and 3 if they form a scalene

triangle (all sides are different lengths).

1 de f s e l e c t i o n _ s o r t (i n p u t _ l i s t) :

2 f o r i i n range (l en (i n p u t _ l i s t) − 1) :

3 min_idx = i

4

5 f o r j i n range (min_idx , l en (i n p u t _ l i s t)) :

6 i f i n p u t _ l i s t [j] < i n p u t _ l i s t [min_idx] :

7 min_idx = j

8

9 temp = i n p u t _ l i s t [i]

10 i n p u t _ l i s t [i] = i n p u t _ l i s t [min_idx]

11 i n p u t _ l i s t [min_idx] = temp

12

13 r e t u r n i n p u t _ l i s t

Listing 4. Selection Sort. Sort the given list of numbers using the Selection Sort algorithm.

1 de f r a i n f a l l (measurements) :

2 r a i n _ t o t a l = 0

3 days = 0

4

5 f o r i dx in range (l en (measurements)) :

6 r a i n_day = measurements [i dx]

7

8 i f r a i n_day == 9 9 9 9 9 :

9 break

10 e l i f r a i n_day > 0 :

11 r a i n _ t o t a l += ra in_day

12 days += 1

13

14 i f days == 0 :

15 r e t u r n 0

16

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:26 A. M. Shin & A. M. Kazerouni

17 r e t u r n r a i n _ t o t a l / days

Listing 5. Rainfall. Let’s imagine that you have a list that contains amounts of rainfall for each day,

collected by a meteorologist. Her rain gathering equipment occasionally makes a mistake and reports a

negative amount for that day. We have to ignore those. We need to write a program to (a) calculate the total

rainfall by adding up all the positive integers (and only the positive integers), (b) count the number of positive

integers (we will count with “1.0” so that our average can have a decimal point), and (c) return the average

rainfall at the end. Additionally, there is a “sentinel” number of 99999—when this number is encountered,

stop counting and return the average so far [6].

1 de f c en t e r e d _ av e r a g e (nums) :

2 min_idx = 0

3 max_idx = 0

4

5 f o r i dx in range (l en (nums)) :

6 i f nums [i dx] <= nums [min_idx] :

7 min_idx = idx

8 e l i f nums [i dx] >= nums [max_idx] :

9 max_idx = idx

10

11 nums [min_idx] = 0

12 nums [max_idx] = 0

13

14 sum = 0

15 f o r num in nums :

16 sum += num

17

18 r e t u r n sum / (l en (nums) − 2)

Listing 6. Centered Average. Return the average of the given list without the highest and lowest values.

You may assume there are at least three items in the list and that every item in the list is a number. If there

are multiple highest or lowest numbers, only exclude one instance of each.

B QUALITATIVE CODING

Table 2. Codes from the open coding process, grouped by the category under which they appeared.

Code/description Frequency Illustrative quote or incident

§4.1 Problem and program comprehension

1 Start by reading the problem descrip-

tion

4 [In Triangle] First thing I would test is just kind of

putting in three random numbers. Say how about...3,

4, 5, that should be a nice scalene, which is a 3...I’m

currently just testing based off of the description.

Thinking about this is what the code ideally should

be doing. (P7)

2 Start by reading the provided program 2 [In Rainfall] Here I was just kind of walking

through and seeing the different if statements. (P9)

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2023.

A Model of How Students Engineer Test Cases With Feedback 1:27

3 Difficulty with code comprehension

complicates testing

1 [In Rainfall] continue , so I don’t think I’ve

ever used this, but does this mean it just continues

to the next line of code? (The student does not

recognize the continue keyword.) (P2)

4 Refer to code to address gap in under-

standing from description

6 [In Triangle] And then returning 3. [3 2 1]. Ohh,

[the system] expected 0. I guess that’s not a thing,

that must be there [indicates first if condition].

OK, well, that is good to know. [3 2 1], cool. (P3)

5 Refer to description to address gap in

understanding from code

9 [In Rainfall, on reading the description] Because

that way it’s easier to understand what the code is

doing, especially since it’s not commented. (P6)

6 Code tracing in basic blocks 7 [In Centered Average] I need the current ele-

ment in the list to be greater than the current max-

imum index. [Participant is conducting tracing

assuming they have slipped into the true clause

of an if condition.]With code coverage just tried

to hit it like just hit the line, get out of the way,

but then for bugs I kind of have to think about it. I

probably like run it through and then try and see

what’s wrong and then yeah base my code off that.

(P2)

7 Hesitation to begin testing with shaky

understanding of the problem

1 [In Triangle] Participant did not start testing till

the problemwas explained; sketched out potential

test cases on paper to help with understanding.

(P3)

8 Test result aids in problem understand-

ing

3 [In Rainfall, runs the test and sees that the out-

put did not match the expected value] Expected

2...Wait. Am I missing something? It’s 6...Oh, but is

0 positive number? (P5)

§4.2.1 Testing with No Feedback

9 Write a basic, easy-to-reason about test 12 [In Centered Average] So I’ll just do like a

simple list first, 1...2...3 (P6)

10 Run tests to get initial feedback 5 —

11 Write a test based on intuition about

edge cases

12 [In Triangle] Let’s do a list of only negative

numbers (P5)

12 Want to put the code through the most

paces

4 [Giving Selection Sort a reverse-sorted list

of numbers.] That puts the code through the most

paces, I think. (P1)

13 Write a test based on a prominent re-

quirement in the description

7 [In Rainfall] [The equipment] makes mistakes,

reports negative amounts. So I’ll try doing negatives,

so I’ll pass by that. (P3)

14 Write a test based on a prominent fea-

ture in the code

5 [In Rainfall] I first, I guess, for why-notsies

I’ll...I’m first gonna write something just that breaks

this [rain_day == 99999] just because I want

to make sure that this runs (P3)

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:28 A. M. Shin & A. M. Kazerouni

15 Detailed program description induced

student to plan tests based on descrip-

tion

2 [In Rainfall] Also...this was a slightly longer

and more complex program...like my first thought

was that’s a wall of text...although it’s really not

all that complicated in terms of what it does, it lists

out all the things that it should do pretty nicely,

which that’s helpful. Because that gives me an idea

of what should the program be doing. (P7)

16 Prefer to test based on problem under-

standing over source code

3 [In Rainfall] Then when I write the tests I read

the prompt and again and I see different things.

(Participant went as far as to scroll the source

code off-screen while writing tests.) (P5)

17 Test plan formed around predicted

code coverage

5 [In Triangle, before any feedback has been dis-

played] So I guess I’ll just write tests for all these

three [Participant hovers mouse over lines 2–4 in

Triangle] and...OK, so just going off like the if

statements or yeah if statement. (P4)

18 Prior experience with BranchCov

leads participant to think in terms of

BranchCov with NoFeedback

5 [In Rainfall] Like I feel like ever since [recent CS

course], like we have to have full coverage all the

time, I kind of just feel like I have to look everything

so everything runs. (P3)

19 Read program line-by-line and write

tests for each statement

8 [In Triangle] But like with this, especially like

with this setup, I can look at my code and write

tests at the same time so I can just like go line by

line and like look at each part of like each line and

make sure that my code is like hitting every section

(P6)

§4.2.2 Testing with Branch Coverage

20 Write a test targeting a particular logi-

cal branch

4 [In Centered Average] So if this current index

is greater than equal to the minimum index. Then

reset the minimum index to the...that index. (P2)

21 Domain knowledge plays a role when

designing tests

6 [In Triangle] Ooh, that would be weird though,

because right if it’s this is a big big bigger side

and they have to say a second biggest side or the

medium side, then technically they’re only a trian-

gle. Is it technically a triangle when they’re equaling

or when it’s an angle of zero degrees, right? Because

that triangle is saying it, so I would probably say I

mean I would say no, because I think you’re right,

so I’m just going to go with that. (P5)

22 Ignore code coverage and test based on

problem description

2 [In Triangle] Trying to remember what isoceles

is. Also, based on the definition. I’m looking at the

code, but I’m trying to mostly do it based on like

what this [problem description] means. (P3)

23 Ignore code coverage and test based on

edge cases

3 [In Centered Average]Definitely code coverage

is like something I try to catch after I’ve written test

cases. (P7)

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2023.

A Model of How Students Engineer Test Cases With Feedback 1:29

24 Trace code to understand coverage

gaps

4 [In Centered Average] So if this current index

is greater than equal to the minimum index. Then

reset the minimum index to the, that index. (P2)

25 Use a variable role to understand a gap

in coverage

7 [In Centered Average] min_index = 1 I

guess we just write a test where everything is less

than one. (Note that the variable’s role was mis-

understood here: min_index was holding the

index of the minimum value, not the minimum

value itself.) (P1)

26 Test further after code coverage is sat-

isfied

4 [In Selection Sort] OK, cool also, I just thought

of this, maybe like it’s just a list of more than one

of the same number. (P2)

§4.2.3 Testing with Mutation Coverage

27 Create a test to kill a mutant without

tracing

4 [In Rainfall]OK, so I guess that has to do with...1

1 1 99999 1 1. So that should return 1. I guess in both

cases. [changes input to [1 1 1 99999 2 1]]

That should kill that bug. (P1)

28 Trace the mutant program to under-

stand it

7 [In Rainfall, reading a displayed mutant] So if

it was... rain_day is the thing, the element of the

list. So if rain_day is greater than 0, it should

run. But if it’s greater than 1, it wouldn’t. Yeah, I’m

trying to like run through what the code is doing I

guess. (P2)

29 Ignore mutants and test based on edge

cases

2 [In Rainfall, ignoring displayed mutation feed-

back] I think there would be something suspicious

that would happen if it was just a day with zero

rainfall. (P1)

30 Hunch that achieving code coverage

for a line will also kill the mutants on

that line

9 [In Rainfall] So I was wondering [about] this bug

and I realized that I hadn’t tested 1, even though

I said it was a special number you know, in my

opinion. So I was like, oh yeah, I should just try it.

(P2)

31 Direct testing efforts based on presence

of mutants

2 [In Triangle] OK, I think they just want me to

check for each side. This [Hovers over bug badges

appearing over an if statement] basically just

means I think that like it doesn’t really matter like

what’s coming out of here, so I should probably

like actually test something that will check [that

condition]. (P6)

32 Difficulty understanding how a killable

mutant differs from the original pro-

gram

5 [In Rainfall] So like given this [for loop], so

it’s running through, everything’s running through

one, it’s running through 2, running through 3, so

on and so forth, and then it, then it’s going to...You

know, I’m not entirely sure how to squash this bug.

[Interviewer proceeds to ask leading questions to

help the participant progress.] (P10)

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:30 A. M. Shin & A. M. Kazerouni

33 Test further after mutation coverage is

satisfied

2 [In Rainfall] I think I’d also probably want to test

with some negative numbers in there. [Interviewer:

Why is that?] Just because it was part of the the

original prompt. So I wanna make sure I guess. (P1)

§4.3 Other patterns

34 Write more tests because of a “feeling”

that they are needed

2 [In Centered Average] Ok, I think I’m not

doing like, like a bigger list. I should do a bigger

list....Let’s see, 1, 0, 1, same numbers here. Just in

case, I’m gonna put like big numbers. (P4)

35 Testing will not be typical if the par-

ticipant is told the program is correct

beforehand

1 [In Centered Average] Well, I know that your

code works because you told me that, so I’m just

writing whatever test I can think of. (P4)

36 Reflect on completeness of tests 1 [In Centered Average] OK, so now I want to

do some of my weird checks. For no reason but just

to make sure. (P1)

37 Write more tests because this is a study

about testing

2 [In Centered Average] Honestly, if I were do-

ing my homework, I would not do this, it’s just for

this. I’m just going to be extra cautious and do that.

[Adds more tests in the NoFeedback condition]

(P4)

38 Write a test by changing an existing

one

10 [In Triangle] The student used

[10, 1, 2] to trigger the condition

side1 >= side2 + side3 , then re-ordered

those values for the two other conditions. (P4)

39 Design an input for a particular state-

ment in the code

2 [In Centered Average] So if this current index

is greater than equal to the minimum index. Then

reset the minimum index to the, that index. (P2)

ACM Trans. Comput. Educ., Vol. 1, No. 1, Article 1. Publication date: January 2023.

	Abstract
	1 Introduction
	2 Background
	2.1 Software testing in fundamental CS courses
	2.2 Test adequacy criteria
	2.3 Models of software tester cognition

	3 Methodology
	3.1 Data collection tool
	3.2 Think-aloud interviews
	3.3 Analysis
	3.4 Acknowledging researchers' positionality

	4 Results
	4.1 Problem and program comprehension
	4.2 Responding to testing feedback
	4.3 Other patterns

	5 Test-Writing Process Model
	6 Threats to validity
	7 Discussion
	7.1 Implications for pedagogy of software testing
	7.2 Future Work

	Acknowledgments
	References
	A Problems used in testing tasks
	B Qualitative Coding

