
Community Action Computing: A Data-centric CS0 Course
Ayaan M. Kazerouni
ayaank@calpoly.edu

California Polytechnic State
University

San Luis Obispo, California, USA

Jane Lehr
jlehr@calpoly.edu

California Polytechnic State
University

San Luis Obispo, California, USA

Zoë Wood
zwood@calpoly.edu

California Polytechnic State
University

San Luis Obispo, California, USA

ABSTRACT
A student’s sense of belonging in computing can be positively im-
pacted when coursework can authentically be connected to real
community contexts. We describe the design, materials, and pre-
liminary evaluation of an introductory programming (CS0) course
infused with a focus on societal responsibility and relevance. We
take a data-centric, constructionist approach to introductory com-
puting. Data-centricity allows us to authentically connect course-
work with students’ communal and societal interests, and students’
motivation was enhanced given that they were creating and shar-
ing artifacts as part of their coursework. Students used TypeScript
to manipulate and analyze real data-sets, and created shareable
websites containing statistics, data visualizations, and reflections
based on the data-set of their choosing. Students chose varied topics
for their assignments—they worked with data about access to CS
education, climate change, and data provided by local non-profit
organizations. A preliminary evaluation indicated that students
who took this CS0 course attained CS-specific learning objectives
equally well in the two subsequent follow-on courses as students
who took alternative CS0 courses at our University. We close with
instructor perspectives and reflections on lessons learned.

CCS CONCEPTS
• Social and professional topics→Model curricula; • Infor-
mation systems→Web applications; • Human-centered com-
puting → Visualization.

KEYWORDS
CS0, Socially Responsible Computing, Web development
ACM Reference Format:
Ayaan M. Kazerouni, Jane Lehr, and Zoë Wood. 2024. Community Action
Computing: A Data-centric CS0 Course. In Proceedings of the 55th ACM
Technical Symposium on Computer Science Education V. 1 (SIGCSE 2024),
March 20–23, 2024, Portland, OR, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3626252.3630807

1 INTRODUCTION
This work strives to address several tensions in introductory com-
puting courses. In particular, broadening participation in computing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE 2024, March 20–23, 2024, Portland, OR, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0423-9/24/03. . . $15.00
https://doi.org/10.1145/3626252.3630807

is a pressing problem for all CS educators and there is good evidence
that integrating real world contexts into introductory computing is
beneficial [10, 23, 37], especially for students who have been histor-
ically under-served in computing. Additionally, the ACM Code of
Ethics and Professional Conduct 1 challenges us to prepare students
to fulfill the mandate: “A computing professional should contribute
to society and to human well-being, acknowledging that all people
are stakeholders in computing”. Yet introductory computing re-
quires a substantial amount of new knowledge that students must
work through when learning to program prior to being able to
contribute to typical computing applications for social good. With
these tensions in mind, this curricular initiative presents the de-
sign and implementation of a CS0 course aiming to retain students,
especially those from historically marginalized communities, by
introducing them to the technical skills needed to become CS ma-
jors while working on computing applications that broadly can be
considered to benefit society.

Another factor in our course design was a desire to address the
needs we perceived in our community that manifested in the all too
frequent emails from our local citizens and organizations asking
for volunteer programming assistance. Each week our department
newsletter frequently includes listings for local non-profits asking
for computer science students to help with their web application.
However, a new student’s ability to contribute to this type of op-
portunity is limited due to the complexity of web development
and frequently students are only able to contribute to this kind of
project later in their major.

At its heart, the goal of this curricular initiative is to broaden
participation in computing. Ultimately our objective was to design
a CS0 course to enable students to see how even their nascent
programming skills could be applied to real-world problems, con-
texts, and community organizations. Our design goals are rooted
in literature demonstrating the value of promoting student sense
of belonging and persistence in computing by enhancing their per-
ception of computing’s potential to benefit society.

This curricular initiative paper describes the design, implemen-
tation, and evaluation of our CS0 course as taught in its first year
(2022–2023 academic year). Section 2 describes the research that
drove us to create the course and Section 3 discusses our design
goals. Following this, Section 4 gives an overview of the course and
the context in which it was taught. Finally, we evaluate students’
attainment of CS learning objectives by studying their performance
and persistence in two follow-on CS courses (Section 5), and con-
clude with instructors’ reflections and insight on the course (Sec-
tion 6). We cannot report on effects on persistence in the major,
since not enough time has passed since the course’s inception. A
future research paper about these impacts will be forthcoming.
1https://www.acm.org/code-of-ethics

https://orcid.org/0000-0002-6574-1278
https://orcid.org/0000-0003-2272-5240
https://orcid.org/0000-0002-4731-239X
https://doi.org/10.1145/3626252.3630807
https://doi.org/10.1145/3626252.3630807

SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Ayaan M. Kazerouni, Jane Lehr, and Zoë Wood

2 BACKGROUND AND MOTIVATION
A student’s sense of belonging [21] in an academic discipline is
associated with improved academic performance, motivation, and
persistence [5, 15, 20, 29, 31]. In computing, however, women are
less likely than men to report a high sense of belonging [12, 31],
and Black and Asian students are less likely than White students to
report a high sense of belonging [29, 31]. Hispanic/Latino students
have reported a lower sense of belonging in college environments
than White students [26, 38]. Targeted interventions to improve
sense of belonging are therefore a worthwhile endeavor.

Sense of belonging (and, as a result, persistence) can also be
affected by a student’s perception of their discipline as having com-
munal goal affordances [4, 29]. However, computing is perceived
to afford lower opportunity to meet these kinds of goals than other
STEM fields like the life sciences or physical sciences [4]. This
incongruence can negatively impact the sense of belonging for
students with stronger communal goal orientations [29], i.e., stu-
dents that are more drawn to goals that further the betterment of
society or their communities. Women and Hispanic/Latino, Black,
and Asian students are more likely than men and White students
to hold communal goal orientations [2, 4, 6, 29, 33].

Understanding and attending to the relationship between stu-
dents’ values and interests and computing could have a positive im-
pact on the engagement and retention of students from historically
marginalized backgrounds [1, 13, 36]. Tissenbaum et al. [40] and
Bart et al. [3] have advocated for the use of personally meaningful
real-world contexts to help motivate students learning introductory
computing, and to help them build a computational identity. For
example, the incorporation of service learning to engage students
has been shown to have positive academic and personal impacts [7–
9]. Exposure to practical projects demonstrating how computing
can positively impact society has proven to be a key factor driving
women’s interest in computing [11, 22].

These studies suggest that clear signaling of computing’s ability
to benefit communal goals could have positive impacts on the re-
cruitment and retention of students from backgrounds that are his-
torically under-represented in computing. Our course is informed
by these related works. We expand further on the research that
informs our design goals in Section 3.

3 DESIGN GOALS
Our intended audience for this course is first-year students who
have little-to-no prior experience with programming. This includes
both computing majors (Computer Science, Software Engineering,
or Computer Engineering) and non-computing majors (often, since
it is required for their program, Graphic Design majors). Our de-
sign goals are threefold. First, we built upon what we know about
effective introductory programming education. Second, keeping in
mind our over-arching goal for developing this course, we included
a sustained focus on social responsibility and relevance. Finally, we
prioritized the building and sharing of computational artifacts; this
informed our choice of programming platform (the Web).

3.1 Introductory CS education tenets
The role of data in computing. We provided explicit instruction
on data types, including compound types, and their centrality to

problem solving. We included exercises for students to reason about
the data definitions needed to solve programming problems [16].

Also in service of this goal, we chose to work with a statically
typed programming language—TypeScript, a statically-typed super-
set of JavaScript—which helped emphasize to students the relation-
ship between data and computation. Studies have shown that using
a statically-typed language has a positive impact on developer pro-
ductivity when the programming task involves new or unfamiliar
APIs, and when fixing type-related errors [14, 17, 30].

Expressions and evaluation. We wanted students to build an
abstract understanding of the program execution environment (i.e.,
the notional machine) they would be using. This helps the learner
construct a robust mental model of how programs will execute, and
improves their ability to apply this knowledge to new problems or
contexts [19]. Therefore, before working with any programming,
we delivered roughly 1.5 weeks of instruction and exercises about
data, expressions, and evaluation, building on what the students
knew from algebra. We frequently returned to this language and
set of examples throughout the term.

Reading before writing. Fuller et al. [18] and Xie et al. [43]
have argued that reading programs is a distinct and pre-requisite
skill to writing programs. For each computing topic introduced (e.g.,
data types, variables, functions, control flow), we first attended to
code comprehension skills through code tracing exercises before
moving on to exercises that involved writing or modifying pro-
grams (e.g., programming problems or Parsons problems). We also
included an emphasis on patterns for problem solving (e.g., map,
filter, and reduce). These were introduced first in the imperative
style (as usage patterns for the for...of loop) and then using the
map, filter and reduce higher-order functions in TypeScript.

Data-centricity. Traditional introductory programming courses
tend to work with programming problems based on artificial data in
the form of numbers, array, or strings [39]. This can lead students—
particularly non-computing majors or those without prior expo-
sure to computing—to feel that the course is inauthentic or irrel-
evant to their interests. Therefore, we designed our course to be
“data-centric” [28]—nearly all programming assignments involved
manipulation of real data-sets. Data-sets were obtained from vari-
ous sources, including the CORGIS repository [3], local non-profit
organizations, and data about secondary CS enrollments in Cali-
fornia [27]. This focus also provided a vehicle through which to
engage our next goal of infusing socially relevant and responsible
computing into all aspects of the course.

3.2 Social responsibility and relevance
With our audience in mind and in particular considering the impor-
tance of supporting a diversifying student population, we embraced
suggestions from prior research on the importance of focusing our
curriculum on the ways computing can connect with and benefit
society. We chose programming assignments which used commu-
nity data and focused on observations that could be made from
the data, including variance based on demographics, allowing for
opportunities to reflect on historical injustices, such as access to
computing education based on county economics.

Our goals were for students to:

• Engage with code that has a purpose

Community Action Computing: A Data-centric CS0 Course SIGCSE 2024, March 20–23, 2024, Portland, OR, USA

• Work on programs and coursework that were personally or
societally meaningful by focusing on community data

This means that for the two primary offerings of this course,
our coursework centered around the use of 1) educational data
related to CS education access in California schools, including both
regional data and student demographic data, 2) local non-profit data
shared with permission, 3) various sources of communal data from
CORGIS [3], and 4) proportionally-representational population data
for assignments related to demands for public housing in California,
including student-designed waiting list criteria such as income,
family size, occupation, disability status, etc. More details appear
in the course description (Section 4).

3.3 Prioritizing building and sharing
We made a number of technological choices that prioritized em-
powering students to design and create shareable artifacts. We are
driven by tenets of constructionism [24], a constructivist learning
theory that suggests that knowledge construction occurs best when
the student creates tangible, shareable objects.

We culminated the course with a final project in which students
created shareable websites in which their TypeScript programs
would run. The Web is a ubiquitous computing platform (students
see and interact with web applications in their daily lives) and there
is clear potential for web applications to be shared publicly. Our
choice of TypeScript as the course’s programming language was
partially driven by this goal.

The Web and our goal of data-centricity (Section 3.1) worked
together particularly felicitously. Students used Vega-lite [35] to
create web-based data visualizations based on the data-sets being
used in each assignment. Vega-lite provides a declarative JSON
syntax that is simple enough for these students to use (low floor),
but powerful enough towhere one can create remarkably expressive
visualizations (high ceiling).

The programming aspects of the course began with students
creating standalone Vega-lite figures using the Vega online editor.2
This was a useful vehicle through which students could engage
with the affordances of different types of data (quantitative, ordi-
nal, temporal, and nominal). By the end of the course, when their
TypeScript skills were sufficiently strong, the students were able to
manipulate, analyze, and prepare data-sets using TypeScript, create
figures using Vega-lite, and embed them in publishable webpages.

Of course, all of this comes with the clear challenge that web
development typically requires a complex development environ-
ment. For example, students were writing TypeScript code that
needed to be compiled to JavaScript before it could be executed or
included in an HTML page. Properly setting up all of these pieces
would cost the students—who had little-to-no prior programming
experience—enormous extraneous cognitive load, distracting from
the course’s objective of teaching introductory programming.

We therefore used pre-configured online programming environ-
ments for all programming assignments—specifically, the online
Vega editor mentioned above and Replit.3 For example, the step of
compiling TypeScript code to JavaScript code was hidden from the
students—they could program in TypeScript and simply hit a “Run”

2https://vega.github.io/editor/ — where one can create and preview Vega-lite figures.
3https://replit.com — an online IDE that includes a Webview for web-based projects.

button in Replit to see the result. The websites that students created
were automatically allocated unique shareable URLs, meaning they
were shareable artifacts.

All of this helped us to remove barriers preventing students from
building data-driven webpages and sharing them.

4 COURSE DESCRIPTION
With these goals in mind, we developed a CS0 course that has been
taught two times to the target audiences of computing majors with
little-to-no prior programming experience and specific non-majors
as listed above in the 2022-23 academic year. We provide a course
overview including key assessments and examples of student work.

Institutional context. We are writing from the context of
a medium-sized, primarily-undergraduate institution in the USA.
First-year students are admitted directly into declaredmajors. There-
fore, each Fall term, the CS0 course is primarily taken by computing
majors (Computer Science, Software Engineering, or Computer En-
gineering) who have not taken any Advanced Placement (AP) CS
courses. The course serves as the first in a sequence of introductory
programming courses for computing majors; after CS0, students
continue on to a CS1 course that uses Python. In addition, one
section of our CS0 course is typically reserved as a support course
for Graphic Design majors each year, usually in the Winter term.

At our institution, Hispanic/Latino students leave the CS major
at a higher rate (17.8%) than White or Asian students (7.9%). A
primary goal of the curricular initiative described in this paper is
to improve the retention of students in computing courses who
identify as a part of a historically marginalized group in computing.
This includes retention of computing majors through their 4–6-year
degrees, as well as in-course retention of non-computing majors
who take the course due to interest or program requirements.

Our institution has been teaching a variety of CS0 topics for
over ten years [25], including a longitudinal study comparing the
efficacy of the mixed context and development environments [42].
The presently described CS0 is the newest such course. This newest
course arises from a collaboration with five other primarily un-
dergraduate institutions focusing on broadening participation in
computing. This cross-institutional project aims to enhance early
computing students’ perception of CS as a field that offers opportu-
nities for engaging with and benefiting society and communities.
As this cross-site alliance is in its nascent phase, a comprehensive
evaluation including all participating campuses will be forthcoming.
This curricular report describes the new course at our institution.

Course overview. An overview of the course is presented in Ta-
ble 1, broken down by week. Our academic terms are 10 weeks long.
The class met three times per week, and each session included a 1-
hour lecture followed by a 1-hour lab in which students completed
exercises or participated in discussions.

This being the first post-secondary computing course for all
students, we began the course with a discussion of the ACM Code
of Ethics and Professional Conduct and the students’ views of the
professional community of which they intended to be a part.

4We do not mean these terms in the Java object-oriented sense. Here, object refers to
a dictionary of key-value pairs, and interface refers to the TypeScript construct for
specifying the "shape" of an object.

SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Ayaan M. Kazerouni, Jane Lehr, and Zoë Wood

Table 1: An overview of the 10-week course, as taught to computing majors in the Fall 2022 term (Winter term included the
alternative assignments as listed in the paper).★ denotes a societally or personally (to the student) meaningful context.

Week Topic Major assessments

1 ACM Code of Ethics
Introduction to data

Read the ACM Code of Ethics and respond to a reflection prompt★
Identify the types of data used in a figure or problem (quantitative, nominal, or ordinal)
Use Vega-lite to visualize data provided by the local cat shelter and housing

data obtained from CORGIS [3]★

2 HTML and CSS fundamentals
Expressions and evaluation

Create a styled webpage with self-help materials for first-time college students★
Evaluate the given compound numerical expressions

3
Statements and expressions in TypeScript
Variables and data types
Arrays

Declare and initialize variables with types for the given (string, number, or boolean) expressions
Given arrays containing data about K-12 CS offerings in counties in California, compute statistics

and answer questions about which counties can offer the least or most CS courses★

4 Functions and control flow
Code tracing exercises
Write functions to answer parameterized questions about CS education access using the data-set

from the previous assignment★

5 Loops and loop patterns (imperative
map, filter, and reduce) The Rainfall problem

6 Compound data (objects and interfaces)4
Given a richer data-set about CS education enrollments in California, declare an interface

to represent individual records★
Write functions to answer questions about girls’ enrollments in CS courses in secondary school★

7 Functions as values
Code tracing exercises
Use the in-built higher-order functions map, filter, and reduce to answer questions about the
data-set from the previous assignment★

8 TypeScript in a webpage
Given a still richer data-set about CS education in California—now including data about race—

use Vega-lite to create figures and embed them in a website; respond to reflection prompts
about your figures and analysis★

9 Review No new assessments

10 Final project (in groups)

In consultation with the instructor, choose a data-set and use what you have learned so far
(Vega-lite, HTML, CSS, TypeScript) to create a website containing your insights and
reflections on your chosen topic★

Present your report to the rest of the class★

Following this, we discussed data types and their affordances,
supporting the discussion with figures created using Vega-lite. For
instance, using data provided by the local cat shelter, students
created scatter plots to study the age at which male and female
cats arrived at the shelter (working with nominal and temporal
data). Then, after a brief introduction to HTML, CSS, and the Web,
students created 2–3-page websites containing tips for secondary-
level students preparing to apply to and move to post-secondary
school (“college” in the US).

The first TypeScript content was introduced in Week 3. By this
time, we had established a shared vocabulary and understanding
for “data types”, “abstractions”, “statements”, and “expressions” to
which we returned throughout the quarter. For the first TypeScript
assignment, students were given data about the percentage of sec-
ondary schools in each California county that offer any CS courses,
and were asked to compute statistics about CS education access
in California. The data is tracked by a coalition of stakeholders
interested in expanding access to CS education in California [27]
and was provided by authors of the cited report.

In the Fall term, when the course was mostly taken by declared
computing majors, most programming assignments adhered to this

over-arching context of CS education access. As their TypeScript
knowledge and skills progressed, students were given progressively
richer versions of the dataset. After the first assignment with only
two data fields (county name and percentage of schools with CS),
we moved on to compound objects with additional fields for gender
representation in CS courses, and finally to more detailed records
describing CS enrollments at the intersections of race and gender.

Students’ increasing familiarity with this context and data-set
enabled us to have rich in-class discussions about representational
disparities involved in secondary-level CS education, reasons for
these disparities as discussed by Wang et al. [41], and consequences
for representation in CS courses at the post-secondary level and
in the workforce. Since most students were in-state students, they
also explored the state of CS education access in their hometowns
compared to the statewide average.

In theWinter term,when the coursewas taken by non-computing
majors, students did not engage as deeply with the context of CS ed-
ucation access. After a class poll to solicit student input, this section
explored more varied contexts in their programming assignments—
two topics commonly preferred by students were housing equity

Community Action Computing: A Data-centric CS0 Course SIGCSE 2024, March 20–23, 2024, Portland, OR, USA

and food access. A significant multi-week project involved the dis-
cussion and implementation of an algorithm to rank applicants
for public housing in which the students chose ranking criteria,
reflected on those criteria with at least three community members
outside the course, implemented an algorithm, and then reflected on
which applicants were served and not-well served by their choices.5
An entire lab period was dedicated to a class discussion on the
power a developer has in making these algorithmic choices and
the impacts on equity for a community. For example, one criterion
that students debated is an applicant’s criminal record, which was
discussed in the context of fairness and community impacts.

Final project. In all offerings, the course culminated with a final
project in which students chose a data-set in consultation with the
instructor, and created a web-based report containing visual and
quantitative analyses about their chosen data-set. After creating
and turning in their websites, students presented their findings to
the rest of the class in the final week of the quarter.

Data-sets were either made available by course instructors (e.g.,
for data-sets provided by local non-profits) or obtained from COR-
GIS [3]. Some examples of the topics students explored include:
local beach cleanup events (e.g., amount of trash and recycling
collected, age ranges of participants), provided by a local non-profit
organization; SAT exam attempts and scores and its relation with
household income levels; drug use and age of drug users; fatal police
shootings, including demographic variance; among others.

In conducting their analyses, students reflected on knowledge
they gained about the varied contexts they were studying. For
example, students expressed surprise at the large population of
California, the relative dominance of the Soviet and US space pro-
grams in the history of space travel, inequities involved in the SAT
exam, the lack of access to CS education in many California coun-
ties, and the ubiquitous use of concrete in construction despite its
environmental cost. In this way, while students were learning to
code, students were also “coding to learn” about societally relevant
contexts that were interesting to them [34].

5 PRELIMINARY EVALUATION
Our course was offered for the first time in the Fall 2022 academic
term, taught by one of the authors of this paper. The students were
nearly all CS or SE majors. As discussed in previous sections, our
goal with this initiative was to incorporate elements of socially
responsible and socially relevant computing into CS0, while still
achieving the course’s CS learning goals and preparing the students
to take the subsequent required CS courses. We therefore investi-
gate our students’ attainment of CS learning objectives by studying
their performance and persistence in follow-on courses.

Every year, our department offers a number of thematic “flavors”
of CS0, e.g., computational art, robotics, and now the present course,
community-action computing. All courses are taught in sections of
30–35 students each. In the Fall 2022 term, five such sections were
offered, one of which was the CS0 being described in this paper. We
compared the performance of students who took our CS0 course
(treatment group, 𝑛 = 32) with that of students who took other CS0
courses in the same academic term (control group, 𝑛 = 133). Note
that rates of grade attainment or withdrawals are more volatile for

5This assignment was derived from the work of Evan Peck [32].

CS 0 CS 1 CS 2
Course

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Gr
ad

e
Po

in
ts

Treatment
Control

Figure 1: Distribution of grade points in CS0, CS1, and CS2
courses for students in the treatment and control groups.

Table 2: For CS0, CS1, and CS2, the number of students, me-
dian grade attained, number of failing grades received, and
the number of withdrawals. Data is present for the control
group (C) and the treatment group (T).

CS0 CS1 CS2

Students C 133 125 107
T 32 29 23

Median grade C A B+ B+
T A A– B+

Failing Grades C 4 (3%) 18 (14.4%) 4 (3.7%)
T 1 (3.1%) 4 (13.7%) 0 (0%)

Withdrawals C 0 1 (0.8%) 1 (0.9%)
T 1 (3.1%) 1 (3.4%) 0 (0%)

the treatment group, since that group encompasses one section,
while the control group encompasses four sections.

Demographics. The computer science first-time first year stu-
dent population for the year of this work comprised 28% female
students and 21% students identified by our University as having
an identity from an underrepresented minority (“URM”).6

We studied students’ performance in two follow-on courses that
are required by computing majors: Fundamentals of Computer
Science (“CS1”) and Data Structures (“CS2”). Both courses were
taught using Python by instructors un-affiliatedwith our CS0 course
and this paper. Data about grade attainment in CS0 and performance
in follow-on courses is summarized in Table 2. Not all students from
CS0 went on to take CS1 and CS2. This can happen for a number
of reasons. For example, a total of 7 students (2 in the treatment
group and 5 in the control group) skipped CS1 and went directly to
CS2 after completing CS0.

Grade attainment in follow-on courses. For this analysis,
we converted nominal course grades into “grade points” using the
mapping that our university uses to compute GPAs. As can be
6Our University uses the term “URM” to designate students “whose race/ethnicity is
Hispanic/Latino/a/x, African American, Native American, Hawaiian/Pacific Islander,
or multi-racial with at least one of those four ethnicities”.

SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Ayaan M. Kazerouni, Jane Lehr, and Zoë Wood

seen in Figure 1, students generally performed well in all flavors of
CS0—the median score was a 4 out of 4.

In the CS1 course, students from the treatment CS0 course per-
formed slightly better on average than students from the control
CS0 course. The median student in the treatment group scored
a 3.7 in CS1 (A–), while the median student in the control group
scored a 3.3 in CS1 (B+). A Mann Whitney U test indicated that this
difference was not statistically significant (𝑈 = 2105.5, 𝑝 = 0.83).

In the CS2 course, the median student in both the treatment and
control groups achieved a grade of 3.3 (B+).

Withdrawal and failure rates in follow-on courses. In addi-
tion to grades, we consider the number and rate of students who
failed or withdrew from follow-on courses. A failing grade is one
that would require the student to re-take the course before moving
on in the major (D+ or lower). Table 2 shows that failure and with-
drawl rates were largely similar between our new CS0 course and
other CS0 courses taken in the same term. This is a positive result
considering that a previous (anonymized) longitudinal study [42]
suggests that our menu of CS0 courses are generally beneficial in
the long term with regards to students’ GPAs and persistence.

Outcomes for the non-major section. We also consider CS0
grade attainment for non-computing majors who took the course
in the Winter 2023 term. We cannot report on follow-on courses
for this section because these students are not required to take
the follow-on computing courses. For this section, 94% of students
received a grade of D or better (2 students withdrew from the
course), with 58% achieving A grades. This is a similar success rate
to the prior four offerings of an alternative CS0, computational art,
for the same non-major population which had an average of 95%.

6 INSIGHTS AND CONCLUSION
In this paper, we have described the goals and implementation of a
CS0 course focused on socially responsible computing, aimed at stu-
dents with little-to-no prior programming experience. Preliminary
results suggest that students’ attainment of CS learning objectives
was not negatively impacted by the sustained focus on socially
relevant contexts. While we cannot yet report on student belonging
and persistence in the major (since not enough time has passed),
overall students in our CS0 performed equally well in follow-on
computing courses as students who took other CS0 courses in the
same term. Non-computing majors who do not take a follow-on
course also performed equally well in the treatment CS0 compared
to non-major students in other CS0 courses.

In general, both instructors found that students were energetic,
engaged with the material, and expressive. The ability for students
to choose a context and data-set and to exercise some aesthetic
choice in graphing (particularly for the graphic design majors in the
Winter term) allowed for a degree of self-expression that is often
missing in introductory programming courses. Speaking from 20
years of experience teaching novice programming, the author who
taught the Winter section notes that students were deeply engaged
and excited to work through labs to produce results from the data to
reflect upon (notably the "coding to learn" moments were frequent
and engaging for students).

While in these first offerings, students mostly experienced an
insulated context of presenting findings to other students in the

class, our data-centric community focus has opened doors for pos-
sible collaborations with local non-profit organizations in future
offerings. For example, members from the cat shelter that provided
a data-set for the course expressed an interest in having students
present their findings to shelter organizers. Though we were not
able to organize this in the first offering of the course, it is a goal in
a future iteration, enabling students to experience direct communal
impacts through their coursework.

We made a few atypical technological choices for this course,
notably the Web as a platform and TypeScript as a programming
language. Though TypeScript is not a pedagogically designed lan-
guage, features like its static type system and ability to be embedded
in a web-page meant that it was more appropriate than other com-
monly used introductory languages like, say, Python. Additionally,
pre-configured development environments in Replit meant that
much of the complexity of web development was hidden from stu-
dents. (Though learning about the different pieces involved in a web
application is a worthwhile eventual objective, it is not a learning
objective for this CS0 course.) As students generally performed well
in our course and in subsequent (Python) courses (Section 5), these
choices do not appear to have had particularly pernicious effects,
and helped us meet our stated design goals (Section 3). We also
found that students in general did not express any concerns about
whether the course was “real” CS or used a “real” programming lan-
guage, as often occurs in other CS0 settings. In fact, several upper
division computing students such as the course learning assistants
and those working with the local non-profits expressed that they
wished they had been able to take a CS0 like the current course due
to the value of learning some web development early.

That said, end-of-term evaluations suggested that some students
found the course pace challenging. Both computing majors in the
Fall term and non-computing majors in the Winter term mentioned
that the course moved through topics quickly. So, although CS0
grades and outcomes in follow-on courses were satisfactory, stu-
dents felt challenged enough in the course to specifically mention
it in their comments. We plan to pare down some content in future
iterations, particularly in terms when the course is mostly taken
by non-computing majors.

Overall, we feel this curricular initiative was successful in its first
year and look forward to teaching it again and to future evaluations
of student outcomes.

ACKNOWLEDGMENTS
This work was supported by National Science Foundation award
2216687. We thank Dr. J. Clements for help in retrieving data about
follow-on courses, and the anonymous peer reviewers for their
feedback.

REFERENCES
[1] Susan A Ambrose, Michael W Bridges, Michele DiPietro, Marsha C Lovett, and

Marie K Norman. 2010. How learning works: Seven research-based principles for
smart teaching. John Wiley & Sons.

[2] Lecia Barker, Christopher Lynnly Hovey, and Leisa D Thompson. 2014. Results of
a large-scale, multi-institutional study of undergraduate retention in computing.
In 2014 IEEE Frontiers in Education Conference (FIE) Proceedings. IEEE, 1–8.

[3] Austin Cory Bart, Ryan Whitcomb, Dennis Kafura, Clifford A. Shaffer, and Eli
Tilevich. 2017. Computing with CORGIS: Diverse, Real-world Datasets for In-
troductory Computing. In Proceedings of the 2017 ACM SIGCSE Technical Sym-
posium on Computer Science Education. ACM, Seattle Washington USA, 57–62.

Community Action Computing: A Data-centric CS0 Course SIGCSE 2024, March 20–23, 2024, Portland, OR, USA

https://doi.org/10.1145/3017680.3017708
[4] Aimee L. Belanger, Amanda B. Diekman, and Mia Steinberg. 2017. Leverag-

ing communal experiences in the curriculum: Increasing interest in pursuing
engineering by changing stereotypic expectations. Journal of Applied Social
Psychology 47, 6 (2017), 305–319. https://doi.org/10.1111/jasp.12438

[5] Jennifer M. Blaney and Jane G. Stout. 2017. Examining the Relationship Be-
tween Introductory Computing Course Experiences, Self-Efficacy, and Belonging
Among First-Generation College Women. In Proceedings of the 2017 ACM SIGCSE
Technical Symposium on Computer Science Education (Seattle, Washington, USA)
(SIGCSE ’17). Association for Computing Machinery, New York, NY, USA, 69–74.
https://doi.org/10.1145/3017680.3017751

[6] Anthony P Carnevale, Jeff Strohl, and Michelle Melton. 2013. What’s it worth?:
The economic value of college majors. (2013).

[7] Veronica Catete, Amy Isvik, and Marnie Hill. 2022. A Framework for Socially-
Relevant Service-Learning Internship Experiences for High School Students. In
Proceedings of the 53rd ACM Technical Symposium on Computer Science Education-
Volume 1. 815–821.

[8] James M Conway, Elise L Amel, and Daniel P Gerwien. 2009. Teaching and
learning in the social context: A meta-analysis of service learning’s effects on
academic, personal, social, and citizenship outcomes. Teaching of psychology 36,
4 (2009), 233–245.

[9] Teresa Dahlberg, Tiffany Barnes, Kim Buch, and Karen Bean. 2010. Applying
service learning to computer science: Attracting and engaging under-represented
students. Computer Science Education 20, 3 (2010), 169–180.

[10] Jessica Q. Dawson, Meghan Allen, Alice Campbell, and Anasazi Valair. 2018.
Designing an Introductory Programming Course to Improve Non-Majors’ Expe-
riences. In Proceedings of the 49th ACM Technical Symposium on Computer Science
Education (Baltimore, Maryland, USA) (SIGCSE ’18). ACM, New York, NY, USA,
26–31. https://doi.org/10.1145/3159450.3159548

[11] Jill Denner. 2011. What predicts middle school girls’ interest in computing?
International Journal of Gender, Science and Technology 3, 1 (2011).

[12] Augie Doebling and Ayaan M. Kazerouni. 2021. Patterns of Academic Help-
Seeking in Undergraduate Computing Students. In Proceedings of the 21st Koli
Calling International Conference on Computing Education Research (Joensuu, Fin-
land) (Koli Calling ’21). Association for Computing Machinery, New York, NY,
USA, Article 13, 10 pages. https://doi.org/10.1145/3488042.3488052

[13] Jacquelynne Eccles. 1983. Expectancies, values and academic behaviors. Achieve-
ment and achievement motives (1983).

[14] Stefan Endrikat, Stefan Hanenberg, Romain Robbes, and Andreas Stefik. 2014.
How Do API Documentation and Static Typing Affect API Usability?. In Pro-
ceedings of the 36th International Conference on Software Engineering (Hyderabad,
India) (ICSE 2014). Association for Computing Machinery, New York, NY, USA,
632–642. https://doi.org/10.1145/2568225.2568299

[15] Mica Estrada, Myra Burnett, Andrew G. Campbell, Patricia B. Campbell, Wilfred F.
Denetclaw, Carlos G. Gutiérrez, Sylvia Hurtado, Gilbert H. John, John Matsui,
Richard McGee, Camellia Moses Okpodu, T. Joan Robinson, Michael F. Summers,
Maggie Werner-Washburne, and MariaElena Zavala. 2016. Improving Underrep-
resented Minority Student Persistence in STEM. CBE—Life Sciences Education 15,
3 (2016), es5. https://doi.org/10.1187/cbe.16-01-0038 PMID: 27543633.

[16] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishna-
murthi. 2018. How to design programs: an introduction to programming and
computing. MIT Press.

[17] Lars Fischer and Stefan Hanenberg. 2015. An Empirical Investigation of the
Effects of Type Systems and Code Completion on API Usability Using TypeScript
and JavaScript in MS Visual Studio. SIGPLAN Not. 51, 2 (oct 2015), 154–167.
https://doi.org/10.1145/2936313.2816720

[18] Ursula Fuller, Colin G Johnson, Tuukka Ahoniemi, Diana Cukierman, Isidoro
Hernán-Losada, Jana Jackova, Essi Lahtinen, Tracy L Lewis, Donna McGee
Thompson, Charles Riedesel, et al. 2007. Developing a computer science-specific
learning taxonomy. ACM SIGCSE Bulletin 39, 4 (2007), 152–170.

[19] Mary L Gick and Keith J Holyoak. 1983. Schema induction and analogical transfer.
Cognitive psychology 15, 1 (1983), 1–38. https://doi.org/10.1016/0010-0285(83)
90002-6

[20] Catherine Good, Aneeta Rattan, and Carol S. Dweck. 2012. Why do women opt
out? Sense of belonging and women’s representation in mathematics. Journal of
Personality and Social Psychology 102, 4 (2012), 700–717. https://doi.org/10.1037/
a0026659

[21] Carol Goodenow. 1993. The psychological sense of school membership among
adolescents: Scale development and educational correlates. Psychology in the
Schools 30, 1 (1993), 79–90. https://doi.org/10.1002/1520-6807(199301)30:1<79::
AID-PITS2310300113>3.0.CO;2-X

[22] Google CS Ed Research group et al. 2014. Women who choose computer science–
what really matters: The critical role of encouragement and exposure. Tekninen
raportti. Saatavana elektronisesti (2014).

[23] Mark Guzdial. 2013. Exploring Hypotheses AboutMedia Computation. In Proceed-
ings of the Ninth Annual International ACMConference on International Computing
Education Research (San Diego, San California, USA) (ICER ’13). ACM, New York,
NY, USA, 19–26. https://doi.org/10.1145/2493394.2493397

[24] Idit Ed Harel and Seymour Ed Papert. 1991. Constructionism. Ablex Publishing.
[25] Michael Haungs, Christopher Clark, John Clements, and David Janzen. 2012.

Improving first-year success and retention through interest-based CS0 courses.
In Proceedings of the ACM Technical Symposium on Computer Science Education.

[26] Sylvia Hurtado and Deborah Faye Carter. 1997. Effects of College Transition and
Perceptions of the Campus Racial Climate on Latino College Students’ Sense of
Belonging. Sociology of Education 70, 4 (1997), 324–345. http://www.jstor.org/
stable/2673270

[27] Sonia Koshi, Laura Hinton, Lisa Cruz, Allison Scott, and Julie Flapan. 2021. The
California Computer Science Access Report. (2021). https://csforca.org/wp-
content/uploads/2021/09/KC21007_CS-for-CA_9-28-21-1.pdf

[28] Shriram Krishnamurthi and Kathi Fisler. 2020. Data-Centricity: A Challenge and
Opportunity for Computing Education. Commun. ACM 63, 8 (jul 2020), 24–26.
https://doi.org/10.1145/3408056

[29] Colleen Lewis, Paul Bruno, Jonathan Raygoza, and Julia Wang. 2019. Alignment
of Goals and Perceptions of Computing Predicts Students’ Sense of Belonging in
Computing. In Proceedings of the 2019 ACMConference on International Computing
Education Research. ACM, Toronto ON Canada, 11–19. https://doi.org/10.1145/
3291279.3339426

[30] Clemens Mayer, Stefan Hanenberg, Romain Robbes, Éric Tanter, and Andreas
Stefik. 2012. An Empirical Study of the Influence of Static Type Systems on the
Usability of Undocumented Software. SIGPLAN Not. 47, 10 (oct 2012), 683–702.
https://doi.org/10.1145/2398857.2384666

[31] An Nguyen and Colleen M. Lewis. 2020. Competitive Enrollment Policies in
Computing Departments Negatively Predict First-Year Students’ Sense of Belong-
ing, Self-Efficacy, and Perception of Department. In Proceedings of the 51st ACM
Technical Symposium on Computer Science Education. ACM, Portland OR USA,
685–691. https://doi.org/10.1145/3328778.3366805

[32] Nick Parlante, Julie Zelenski, John DeNero, Christopher Allsman, Tiffany Pe-
rumpail, Rahul Arya, Kavi Gupta, Catherine Cang, Paul Bitutsky, Ryan Moughan,
David J. Malan, Brian Yu, Evan M. Peck, Carl Albing, Kevin Wayne, and Keith
Schwarz. 2020. Nifty Assignments. In Proceedings of the 51st ACM Techni-
cal Symposium on Computer Science Education (Portland, OR, USA) (SIGCSE
’20). Association for Computing Machinery, New York, NY, USA, 1270–1271.
https://doi.org/10.1145/3328778.3372574

[33] Rita Manco Powell. 2008. Improving the persistence of first-year undergraduate
women in computer science. ACM SIGCSE Bulletin 40, 1 (2008), 518–522.

[34] Mitchel Resnick and David Siegel. 2015. A different approach to coding. Interna-
tional Journal of People-Oriented Programming 4, 1 (2015), 1–4.

[35] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer.
2017. Vega-Lite: A Grammar of Interactive Graphics. IEEE Trans. Visualization &
Comp. Graphics (Proc. InfoVis) (2017). http://idl.cs.washington.edu/papers/vega-
lite

[36] Linda J Sax, Kathleen J Lehman, Jerry A Jacobs, M Allison Kanny, Gloria Lim,
Laura Monje-Paulson, and Hilary B Zimmerman. 2017. Anatomy of an enduring
gender gap: The evolution of women’s participation in computer science. The
Journal of Higher Education 88, 2 (2017), 258–293.

[37] Emmanuel Schanzer, Shriram Krishnamurthi, and Kathi Fisler. 2018. Creativity,
Customization, and Ownership: Game Design in Bootstrap: Algebra. In Pro-
ceedings of the 49th ACM Technical Symposium on Computer Science Education
(Baltimore, Maryland, USA) (SIGCSE ’18). ACM, New York, NY, USA, 161–166.
https://doi.org/10.1145/3159450.3159471

[38] Terrell Lamont Strayhorn. 2008. Sentido de Pertenencia: A Hierarchical Anal-
ysis Predicting Sense of Belonging Among Latino College Students. Journal
of Hispanic Higher Education 7, 4 (2008), 301–320. https://doi.org/10.1177/
1538192708320474 arXiv:https://doi.org/10.1177/1538192708320474

[39] The Joint Task Force on Computing Curricula, Association for Computing Ma-
chinery and the IEEE Computer Society. 2013. Computer Science Curricula 2013:
Curriculum Guidelines for Undergraduate Degree Programs in Computer Science.
ACM Press and IEEE Computer Society Press.

[40] Mike Tissenbaum, Josh Sheldon, Lissa Seop, Clifford H. Lee, and Natalie Lao.
2017. Critical computational empowerment: Engaging youth as shapers of the
digital future. In 2017 IEEE Global Engineering Education Conference (EDUCON).
1705–1708. https://doi.org/10.1109/EDUCON.2017.7943078

[41] Jennifer Wang and Sepehr Hejazi Moghadam. 2017. Diversity Barriers in K-12
Computer Science Education: Structural and Social. In Proceedings of the 2017
ACM SIGCSE Technical Symposium on Computer Science Education. ACM, Seattle
Washington USA, 615–620. https://doi.org/10.1145/3017680.3017734

[42] Zoë J Wood, John Clements, Zachary Peterson, David Janzen, Hugh Smith,
Michael Haungs, Julie Workman, John Bellardo, and Bruce DeBruhl. 2018. Mixed
approaches to cs0: Exploring topic and pedagogy variance after six years of
cs0. In Proceedings of the 49th ACM Technical Symposium on Computer Science
Education. 20–25.

[43] Benjamin Xie, Dastyni Loksa, Greg L. Nelson, Matthew J. Davidson, Dongsheng
Dong, Harrison Kwik, Alex Hui Tan, Leanne Hwa, Min Li, and Amy J. Ko. 2019.
A theory of instruction for introductory programming skills. Computer Science
Education 29, 2-3 (July 2019), 205–253. https://doi.org/10.1080/08993408.2019.
1565235

https://doi.org/10.1145/3017680.3017708
https://doi.org/10.1111/jasp.12438
https://doi.org/10.1145/3017680.3017751
https://doi.org/10.1145/3159450.3159548
https://doi.org/10.1145/3488042.3488052
https://doi.org/10.1145/2568225.2568299
https://doi.org/10.1187/cbe.16-01-0038
https://doi.org/10.1145/2936313.2816720
https://doi.org/10.1016/0010-0285(83)90002-6
https://doi.org/10.1016/0010-0285(83)90002-6
https://doi.org/10.1037/a0026659
https://doi.org/10.1037/a0026659
https://doi.org/10.1002/1520-6807(199301)30:1<79::AID-PITS2310300113>3.0.CO;2-X
https://doi.org/10.1002/1520-6807(199301)30:1<79::AID-PITS2310300113>3.0.CO;2-X
https://doi.org/10.1145/2493394.2493397
http://www.jstor.org/stable/2673270
http://www.jstor.org/stable/2673270
https://csforca.org/wp-content/uploads/2021/09/KC21007_CS-for-CA_9-28-21-1.pdf
https://csforca.org/wp-content/uploads/2021/09/KC21007_CS-for-CA_9-28-21-1.pdf
https://doi.org/10.1145/3408056
https://doi.org/10.1145/3291279.3339426
https://doi.org/10.1145/3291279.3339426
https://doi.org/10.1145/2398857.2384666
https://doi.org/10.1145/3328778.3366805
https://doi.org/10.1145/3328778.3372574
http://idl.cs.washington.edu/papers/vega-lite
http://idl.cs.washington.edu/papers/vega-lite
https://doi.org/10.1145/3159450.3159471
https://doi.org/10.1177/1538192708320474
https://doi.org/10.1177/1538192708320474
https://arxiv.org/abs/https://doi.org/10.1177/1538192708320474
https://doi.org/10.1109/EDUCON.2017.7943078
https://doi.org/10.1145/3017680.3017734
https://doi.org/10.1080/08993408.2019.1565235
https://doi.org/10.1080/08993408.2019.1565235

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Design goals
	3.1 Introductory CS education tenets
	3.2 Social responsibility and relevance
	3.3 Prioritizing building and sharing

	4 Course description
	5 Preliminary Evaluation
	6 Insights and Conclusion
	Acknowledgments
	References

