
Recommendations for Improving End-User Programming Education:
A Case Study with Undergraduate Chemistry Students
William Fuchs, Ashley Ringer McDonald,* Aakash Gautam,* and Ayaan M. Kazerouni*

Cite This: https://doi.org/10.1021/acs.jchemed.4c00219 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: Programming is widespread in multiple domains and is being integrated into various discipline-specific university
courses where, like students in a typical introductory computing course, students from other disciplines face challenges with learning
to program. We offer a case study in which we study undergraduate students majoring in either chemistry or biochemistry as they
learn programming in a physical chemistry course sequence. Using surveys and think-aloud sessions with students, we conducted a
thematic content analysis to explain the challenges they face in this endeavor. We found that students struggled to transfer their
programming knowledge to new representations and problems, and they did not have strategies in place for solving problems with
programming. These facts combine to lower students’ confidence in their programming abilities, making it less likely that they will
reach for computing to help solve domain-specific problems. We recommend that students in end-user programming contexts be
explicitly taught the skills of abstraction, decomposition, and metacognitive awareness as they pertain to programming.
KEYWORDS: Chemical Education Research, End-User Programming Education, Abstraction, Decomposition, Metacognitive Awareness

■ INTRODUCTION
Computer programming is commonplace across disciplines
(e.g., climate science1 and chemistry2), carried out by end-user
programmers, so-called because they are often the end users of
their own software. They are estimated to vastly outnumber
professional software engineers,3 and they often work on
critical software systems. Consequently, programming is being
integrated into various non computer science courses2,4,5 to
produce disciplinary experts who are also proficient program-
mers.
At our university, students majoring in chemistry or

biochemistry (two majors offered by the same department)
are taught programming over a required sequence of four
physical chemistry (PChem) courses. The full curriculum,
including the programming aspects, is described in detail in a
previous publication.2 The goal of the curriculum is to impart a
deeper understanding of the PChem concepts by enabling
students to solve problems using programming that would be
difficult or impossible to solve without programming.
Unfortunately, many students in the sequence struggle with

learning programming and the vast majority opt out of elective
computational chemistry experiences. We wish to more deeply

understand their challenges and identify potential areas for
improvement in the course sequence.
We present a case study about the challenges faced by these

students learning programming through analysis of concept
inventory and survey responses as well as interview transcript
data. We used a thematic analysis to answer the following
research question: What are the challenges faced by students
while learning programming in a discipline-specif ic end-user
programming context? On the basis of our findings, we offer
recommendations for the teaching of programming in these
types of contexts and a brief description of how our
recommendations might help.

Received: February 27, 2024
Revised: May 9, 2024
Accepted: June 14, 2024

Chemical Education Researchpubs.acs.org/jchemeduc

© XXXX The Authors. Published by
American Chemical Society and Division

of Chemical Education, Inc. A
https://doi.org/10.1021/acs.jchemed.4c00219

J. Chem. Educ. XXXX, XXX, XXX−XXX

This article is licensed under CC-BY-NC-ND 4.0

D
ow

nl
oa

de
d

vi
a

C
A

L
IF

O
R

N
IA

 P
O

L
Y

 S
A

N
 L

U
IS

 O
B

IS
PO

 o
n

Ju
ly

 5
, 2

02
4

at
 1

9:
38

:5
8

(U
T

C
).

Se
e

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n

ho
w

 to
 le

gi
tim

at
el

y
sh

ar
e

pu
bl

is
he

d
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="William+Fuchs"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ashley+Ringer+McDonald"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Aakash+Gautam"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ayaan+M.+Kazerouni"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jchemed.4c00219&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00219?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00219?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00219?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00219?fig=abs1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00219?fig=abs1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00219?fig=abs1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00219?fig=abs1&ref=pdf
pubs.acs.org/jchemeduc?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jchemed.4c00219?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/jchemeduc?ref=pdf
https://pubs.acs.org/jchemeduc?ref=pdf
https://acsopenscience.org/researchers/open-access/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

■ BACKGROUND
To motivate the learning of programming for students from
other disciplines, educators have often turned to contextualized
pedagogical approaches, where programming content is
integrated into discipline-specific courses. This section
sketches the relevant research, describing the benefits and
drawbacks of highly contextualized computing education.
Contextualized Introduction of Computing for End-User
Programmers
Computer programming is widespread in domains other than
computer science and software engineering. Unlike profes-
sional software engineers, programmers in these domains are
mostly not creating software for others to use�they
themselves are the “end users” of their software, and they are
referred to as end-user programmers.6 They are typically not
formally trained software developers but use various tools and
platforms to write programs to accomplish particular domain-
specific tasks.
End-user programmers often complete tasks by studying

similar programs and modifying them for their own use
cases.3,7 This can be helpful for these learners, because their
programs tend to be short and simple, and their goal is often to
get things done, not to learn programming.8,9 For example,
studying a community of graphic designers, Dorn et al.7 found
that many of the programs produced by and for this
community contained constructs that are typically found in
introductory computing courses (hereafter referred to as “CS
1”).
Educators have opted to introduce programming within the

broader context of a given domain to motivate the learning of
programming (e.g., media computation,10 interactive enter-
tainment,11−13 analysis of personally meaningful data,14,15 and
chemistry2,16). These contextualized approaches often appear at
the introductory level as a way to introduce computing to non-
CS majors, or to CS majors with no prior programming
experience. They have been successful at improving retention
of students in computing degrees13 and at broadening
participation in computing.10,14

These efforts acknowledge the importance of computing as a
tool to engage with a domain topic. This value aligns with end-
user programmers’ task-oriented engagement with computing.
In these contextualized introductions, the primary emphasis
shifts from learning to program to programming to learn the
subject matter. However, we believe that there is a need to
achieve a balance between learning to program and
programming to learn when engaging with computing in a
contextualized setting.
Supporting End-User Programmers in Knowledge Transfer
In end-user programming education contexts, an overly
contextualized base of programming knowledge can lead to
challenges that stifle growth in learning programming.
First, when students are mostly exposed to examples in one

context, they can struggle to disentangle their knowledge from
that context,17 making it difficult to apply what they have
learned to new contexts or problems. This constitutes a lack of
knowledge transfer. Knowledge transfer does not occur simply
by virtue of having the initial knowledge�we have to explicitly
teach in ways that facilitate transfer. Students must learn the
abstract rules of a system (e.g., a programming language) to be
able to apply their knowledge of it in varied contexts.18 In
other words, they must form an accurate mental model of the
program execution environment.

Second, while programming by modifying examples can be
useful, it also erodes the opportunity for the student to learn
more generalizable principles critical to programming. In a
highly contextualized introduction, students can only learn or
use concepts that are present in their current pool of related
programs.7,19 For example, learners are less likely to choose to
define their own reusable functions or to aggregate data using
objects if the pool of programs rarely involves these concepts.7

Finally, in contrast to end-user programming education,
students learning programming to become software engineers
are often taught explicit programming and problem-solving
strategies, such as the Design Recipe20 or Loksa et al.’s six-
stage process.21 Explicit guidance about these processes can
increase a student’s metacognitive awareness as they approach
programming problems.22,23 This knowledge can also improve
a learner’s ability to self-regulate during software develop-
ment,24 affording them the self-efficacy and strategies to tackle
larger or unfamiliar programming problems. End-user pro-
gramming education has not typically devoted focus to these
self-regulatory programming strategies.3

Mental Models and Notional Machines

A mental model is a structure held by an individual representing
their beliefs about how a particular system works.25 They can
update over time as the individual’s understanding evolves, and
they can be incomplete, inconsistent, or incorrect.
Mental models held by experts differ from those held by

novices in important ways.26 Experts’ mental models are based
on a strong understanding of the abstract rules of a system
(e.g., of a program execution environment), which allows them
to gracefully handle unanticipated situations. Conversely,
novices’ mental models are often based on superficial features
of a system (e.g., on keywords or symbol names in a program as
opposed to the execution environment). Novices’ mental
models are, therefore, liable to undergo ad hoc changes during
problem-solving, making them unstable and possibly internally
inconsistent.
A notional machine27 is an abstract model of a program

runtime environment,28 used to explain program execution. It
is crucial for learners to form an understanding of the program
runtime that matches a normative model.29 This “model” does
not need to be the actual machine; it can be a notion of the
machine that operates just beneath the abstractions that the
learner will primarily use.28 That is, it can elide certain details
depending on the level of the learners or the tasks being
performed. For example, a notional machine in an introductory
Java course might describe program execution only in terms of
Java’s memory model and control flow rules. For more
advanced courses or learners, the notional machine might
include facilities for multithreaded programs. Every program-
ming course involves a notional machine, either implicitly in
the programming language and features used or explicitly
taught by the instructor.28 It has been argued that notional
machines ought to be explicitly taught in introductory
programming courses (e.g., Sorva,28 Dickson et al.30).

Learners will inevitably form a mental model of the notional
machine as they work.29 Without explicit instruction, ad hoc
models will be formed based on surface-level characteristics of
programs and not on the underlying execution model. These
types of models may work for a limited subset of programs, but
they will eventually lead to misconceptions and hinder the
transfer of knowledge to new contexts. An important goal of
programming courses is therefore to help students form an

Journal of Chemical Education pubs.acs.org/jchemeduc Chemical Education Research

https://doi.org/10.1021/acs.jchemed.4c00219
J. Chem. Educ. XXXX, XXX, XXX−XXX

B

pubs.acs.org/jchemeduc?ref=pdf
https://doi.org/10.1021/acs.jchemed.4c00219?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

accurate mental model of the notional machine.28 We argue
that courses involving end-user programming are no exception.
Teaching Programming in the Context of Chemistry

There is a lack of consensus among chemistry educators on
whether or not teaching programming should be considered a
goal in a chemistry curriculum. According to a report by the
LABSIP group,31 some chemistry faculty argue that PChem
coursework should involve programming, while others believe
that it would be an unnecessary barrier to student success.
While the group did not make a recommendation about
including programming, it emphasized that faculty should
introduce students to the idea that many PChem problems are
complex enough that computer-based approaches are superior
to calculations by hand, and that many computer-based
approaches (programming, using spreadsheet programs, etc.)
could meet this learning goal.
In agreement with scholarship from as early as the

1960s,32,33 we take the position that programming should be
included in chemistry curricula, grounded in the context in
which it is expected to be used. Doing so would carry with it all
the benefits of contextualized computing education that we
have described above. These benefits might be lost if chemistry
students are placed in CS courses that are divorced from the
chemistry context.
However, despite the growing incidence of teaching

programming in the chemistry curriculum, there has been
limited assessment of the transferability of students’ program-
ming skills to new contexts and no work examining chemistry
students’ mental models about programming. We address this
gap in this paper.

■ STUDY OVERVIEW
We write from a medium-sized primarily undergraduate public
institution in the United States of America. It has a large and
moderately selective college of engineering where class sizes
rarely exceed 35 students. We studied undergraduate students
learning programming in a PChem course sequence. The
sequence is taken by undergraduates majoring in either
chemistry or biochemistry during their third year (in a
typically four-year program) at our university. The primary
focus of these courses is physical chemistry, not programming.
At the time the study was conducted, the programming in the
course was taught using MATLAB, though it has now switched
to Python. However, our findings and recommendations are
not tied to any particular programming language.
The programming portion of this sequence is described in a

previous paper2 and is summarized in Table 1.

While the PChem curriculum has been implemented for 10
years, the programming component of the sequence has been
challenging for many students. Students struggle to learn the
programming content and seem to desire to learn only enough
to complete their required assignments. This sentiment was
expressed numerous times on course evaluations for all seven
instructors who have taught the courses. Following this
sequence, the students are eligible to take an advanced elective
computational chemistry course. Perhaps unsurprisingly, the
vast majority of students�generally more than 75%�self-
select out of the advanced elective course. Those who do grasp
the programming content go on to successfully use that
knowledge in their research groups.2 We would like to increase
the incidence of this less common scenario.
We conducted two studies to learn about students’ attitudes

toward and abilities with computing. First, our preliminary
study used two surveys to quantitatively measure these items.
Results from these surveys motivated our core study, in which
we conducted a series of one-on-one interviews with students
enrolled in the PChem sequence. Our research protocol and
materials were approved by our Institutional Review Board
(IRB) prior to conducting the study. The following sections
describe our data collection and analysis processes for each of
the studies.

■ PRELIMINARY STUDY: SURVEYS
We used a pair of surveys to measure students’ attitudes
toward computing and MATLAB knowledge, both adminis-
tered to students enrolled in the second (n = 32) and third (n
= 36) PChem courses in the spring term of 2021.78 All
students were required to take the surveys outside of class
time, and responses from consenting students (100%) were
included in our analysis. The two surveys were given to
students as a single questionnaire, and students were given 75
min to complete it. The survey was administered to a section
of each course, resulting in a roughly even split of responses
between each course.
Demographic details about the survey respondents are

provided in Table 2. Though we did not base any analyses on
these fields, they are provided for the sake of context.

Table 1. MATLAB Topics Covered in the PChem
Curriculuma

PChem course major MATLAB topics

First course Symbolic math in MATLAB
Using and writing scripts in MATLAB
Arrays and plotting

Second course Write and use functions
Conditional logic (including relational operators)
Differential equations and plotting

Third course Matrix manipulation
Advanced control flow (nested conditionals, loops, nested
loops)

aParaphrased from McDonald and Hagen.2

Table 2. Summary of Survey Participant Demographics (n =
68)

Race
White 56%
Asian 24%
Latinx/Hispanic 11%
Two or more 6%
Prefer not to answer 3%

Gender
Woman 63%
Man 33%
Nonbinary 3%

Major
Biochemistry 55%
Chemistry 45%

Do you use CS outside the classroom?
No 76%
Yes 24%

Journal of Chemical Education pubs.acs.org/jchemeduc Chemical Education Research

https://doi.org/10.1021/acs.jchemed.4c00219
J. Chem. Educ. XXXX, XXX, XXX−XXX

C

pubs.acs.org/jchemeduc?ref=pdf
https://doi.org/10.1021/acs.jchemed.4c00219?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Attitudes toward Computing

We used the Attitudes Toward Computing (ATC) scale34 to
measure students’ conf idence with and enjoyment of computing,
their perception of computing as important and useful, and the
strength of their belongingness79 in computing. Together, these
constructs can explain in large part one’s motivation to persist
in an academic discipline.35

All questions were answered on a five-point scale from
strongly disagree to strongly agree. Scores for each construct
were obtained using the mean of the items for that construct.
Result: Students reported negative attitudes toward computing.

On average, students reported low confidence (μ = 2.25, σ =
0.95), enjoyment (μ = 2.5, σ = 0.87), and belonging (μ = 2.3, σ
= 0.84). However, computing was perceived as marginally
useful (μ = 3.66, σ = 0.82).
Programming Knowledge

Next, we used a pilot exam used to gain an initial
understanding of students’ MATLAB knowledge. We used
the MATLAB Computer Science 1 (MCS1)36 concept
inventory, a MATLAB assessment that is based on the
“SCS1”, an existing validated assessment of programming
knowledge.37

Result: Students performed poorly on the MCS1 (μ = 30%, σ =
15%). Prior work suggests that the SCS1 is a difficult test and
not suitable as an introductory-level CS pretest.38 Upon further
review of the test, we found that many of the MCS1 questions
tested concepts that had not been covered in class. We
therefore elected to take a more refined qualitative approach to
understanding students’ MATLAB knowledge, described in the
following section.

■ CORE STUDY: INTERVIEWS
Following the surveys, we conducted interviews in the fall 2021
and winter 202280 academic terms to gain a richer under-
standing of students’ attitudes and abilities. A total of eight
interviews were conducted, and participants were enrolled in
either the first (n = 4) or second (n = 4) PChem course. The
interviews were in person or over video conferencing software,
and the audio was recorded and transcribed. Interviewees were
recruited using in-class announcements, and they were
compensated for their participation with online retail gift
cards worth $25. No students who took the surveys are likely
to have participated in the interviews (unless they retook the
second PChem course and happened to be interviewed). We
cannot say for certain since survey responses were anonymized
per our IRB-approved research protocol.
Interview Procedure

We administered a modified MCS1 as a think-aloud interview
instead of a multiple-choice exam. The first and last authors
independently labeled each MCS1 question with the learning
objectives that it assessed and then collaboratively discussed
and refined their labels until they were in agreement. We then
selected a subset of MCS1 questions that targeted PChem
learning objectives such that interview participants had
previously been exposed to all the concepts that appeared in
the questions.
Borrowing from the grounded theory methodology,39 we

continuously analyzed interview transcripts and adjusted
interview questions to explore emergent concepts of interest.
We made two major types of changes to the interview
questions.

1. Questions were rewritten to only use syntax or concepts that
were previously taught in class. Some questions involved
concepts that the students had simply never seen before. For
example, one problem asked students to explain a function that
squares all of the odd numbers in an array and returns the
array. The function used the modulo operator (%) to
determine a number’s parity. Since PChem students are not
taught this operator, we modified the problem to test for parity
by comparing the results of division by 2 and integer division
by 2. The students were generally able to trace this modified
line, which allowed us to gain insight into their knowledge of
the problem’s target concepts of functions and control f low.
2. Multiple-choice questions were turned into short-answer

questions. The original MCS1’s multiple-choice questions allow
students to solve problems through a process of elimination of
choices, making it difficult to gauge the student’s under-
standing of MATLAB. For example, one problem lists a series
of variable assignment statements and, given a set of initial
values, asks the student to order the statements such that a
given variable ends up with a particular value (see Box 1). As a

multiple-choice problem, this can be solved by testing each of
the available orderings until the correct one is reached. As a
short-answer problem, the student must understand the
relationships between statements, identify and ignore un-
necessary statements, and construct a plan to achieve their
goal. This allowed us to distinguish between students who
were only able to mechanically trace the function one
statement at a time and students who were able to explain
the purpose of the function at an abstract level. This gave us
richer insight into students’ understanding of MATLAB and
their problem-solving strategies.
We also asked students the following three questions and

subsequent follow-up questions as part of a semistructured
interview.

• How do you feel about MATLAB?
• Do you use MATLAB if it is not specifically asked for in
a question or problem?

• How do you feel about your computing abilities?

Analysis
CS educators have adapted Bloom’s taxonomy into a
computing-specific taxonomy (the matrix taxonomy) to
describe stages of programming knowledge.40 The key insight
behind the matrix taxonomy is that the ability to interpret a
program and the ability to produce a program are semi-
independent skills.41

In the matrix taxonomy, levels of program interpretation
(remember, understand, analyze, evaluate) are on the horizontal
axis, while levels of program production (apply, create) are on
the vertical axis (e.g., see Figure 1). Fuller et al.40 argue that
this framing allows one to categorize various programming
tasks in terms of the code-reading and code-writing skills they

Box 1. Given initial values for all these variables, this
problem asks students to reorder these assignment
statements such that a given variable ends up with a
particular value.

Journal of Chemical Education pubs.acs.org/jchemeduc Chemical Education Research

https://doi.org/10.1021/acs.jchemed.4c00219
J. Chem. Educ. XXXX, XXX, XXX−XXX

D

https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00219?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00219?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00219?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00219?fig=&ref=pdf
pubs.acs.org/jchemeduc?ref=pdf
https://doi.org/10.1021/acs.jchemed.4c00219?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

require. For example, modifying an existing program to solve a
new problem involves understanding the existing code and
applying one’s programming knowledge to make the necessary
modifications.40 Higher-level tasks like refactoring involve a
deep understanding of the problem and program and sit at the
highest levels on both dimensions, i.e., evaluate and create.
We set out to use the matrix taxonomy to categorize

students’ abilities with various MATLAB programming
concepts. Learning to program involves understanding multi-
ple computing concepts that are not directly related, and
mastery of one does not imply mastery of others. Following
Castro and Fisler,42 we used a multistrand taxonomy to
separately categorize students’ abilities with different program-
ming concepts. We settled on three strands:

• Control Flow includes statement ordering, conditionals,
and loops.

• Variables & Arrays includes variable assignment and
mutation, as well as array operations. We chose to
combine variables and arrays since all MATLAB
variables are arrays.

• Functions includes creating custom functions, as well as
calling functions and scope of the variables and
parameters local to the function.

After each interview, the researcher who conducted the
interview created a memo describing the student’s location on
each strand of the taxonomy. Each memo included quotes and
incidents from the interview that indicated the student’s ability
level for each strand (see Figure 1). Misconceptions were
placed outside the producing−interpreting grid, in the bottom-
left cell.
Two researchers collaboratively discussed the memos for the

first three interviews, making adjustments and clarifications
until a shared understanding of each level of the taxonomy was
reached. Following this, the first author individually prepared
memos for the remaining interviews, locating students on the
matrix taxonomy.
Results
We begin by summarizing the students’ programming abilities
based on our interviews, following which we describe recurring
patterns we observed as students worked through program-
ming problems.

Overview of Programming Abilities among PChem
Students. Control Flow. Five out of eight students were able
to reach the Understand/Apply level in Control Flow (blue in
Figure 1).81 For example, one problem in the interview
provided students with a set of variable assignment statements
(Box 1) and initial values. We asked them to order the
statements such that a given variable would end up with a
required value. The problem evaluated students’ understanding
of assignment statements, their code-tracing ability, and their
mastery of organizing statements in a program. The problem
required students to understand the mechanics of the
assignment operator and, critically, understand the relation-
ships between the different variables.
Students at the Understand/Apply level understand that lines

of code are executed sequentially and apply that knowledge to
construct and test different orderings. However, they were
unable to gauge the higher-level relationships between the
variables. They often used a “brute force” approach by testing
seemingly random orderings until they found one that worked.
In contrast, students at the Analyze/Apply level (two out of

eight) began by decomposing the problem, first identifying the
statements that would affect the variable of interest (x),
demonstrating higher-level code interpretation skills, one that
moved them beyond understanding the variable assignment
syntax to work with relationships between variables. While
solving the problem and thinking aloud, one student said:

So the thing that I’m looking for first is which one will
actually affect a, because that’s the one that I’m trying to
change, and then I just need to set the variables that are in
the one that affects a be the the correct form. − P7
Like P7, some students were able to draw out the variables

and the relationships between them.
Variables & Arrays. Most students (six out of eight) were

able to reach the Understand/Apply level in Variables & Arrays
(orange in Figure 1). Students at the Understand level typically
did not express misconceptions about variables. The student at
the Remember/Apply level was able to recognize the variable
assignment syntax but displayed a flawed understanding of how
variables work in MATLAB. They displayed the so-called
“parallelism bug”,43 where they expected the runtime to be
reactive. That is, if a variable was given a new value, they
expected the values of prior expressions using that variable to
also be updated. The student at the Remember/None level
could recognize a variable assignment statement or the use of a
variable but was unable to effectively trace or explain code that
used variables.
Functions. Functions proved to be difficult for most

students (red in Figure 1). Students also expressed the most
varied levels in this strand. Students at the Remember/Apply
(two out of eight) level could be expected to remember some
facts about functions and apply them to programming.
However, they often expressed important misconceptions
(discussed in the section Recurring Patterns) that sidelined
their attempts to apply their knowledge. Students at this level
tend to use a trial-and-error approach, which can lead to
frustration as they encounter errors.40

In a problem that asked students to explain a function, the
student at the Understand/Apply level explained it line by line.
While technically correct, this suggests that they considered
functions as a collection of lines of code, not as a modular
entity that accomplishes a task, one that could be reused as a
building block to solve other problems. On the other hand, the
student at the Analyze/Apply level was able to read the

Figure 1. Number of students in each cell of the matrix taxonomy for
the Control Flow, Variables & Arrays, and Functions strands.

Journal of Chemical Education pubs.acs.org/jchemeduc Chemical Education Research

https://doi.org/10.1021/acs.jchemed.4c00219
J. Chem. Educ. XXXX, XXX, XXX−XXX

E

https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00219?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00219?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00219?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00219?fig=fig1&ref=pdf
pubs.acs.org/jchemeduc?ref=pdf
https://doi.org/10.1021/acs.jchemed.4c00219?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

function and describe it as a high-level abstraction, in terms of
its inputs, outputs, and purpose, demonstrating “task-level
thinking”44 and “plan knowledge”.45

Recurring Patterns. We now discuss recurring patterns
and misconceptions we observed during the interviews.
Difficulties with and Expressions. In MATLAB, and(A,

B) and A & B are two ways to express a logical AND of two
Boolean expressions A and B. Students in the PChem sequence
had been taught the and syntax. Many students (P2, P3, P4,
P5, P6, P8) could correctly trace a program with conditional
branching (e.g., if and(a, b) ...), but were stymied by a
statement like c = and(true, and(true, false)).
Students who held this misconception were placed in the
Understand/Apply cell of the Control Flow strand (Figure 1).
For example, when asked to solve a Boolean logic problem

containing a standalone and expression, one student said:
We’ve never gone over a problem like this, or the logic
behind this ... I would really just be guessing on this. − P5
Then, while solving another problem, the same student

correctly traced an and inside an if statement:
[In a snippet where a, b, and c are numeric variables] a is
greater than b and b is greater than c, so that’s not true
because 3 is not greater than 7. − P5
These students understood “if-and” as its own MATLAB

construct. Lacking an abstract understanding of the concepts of
statements and expressions, they combined the notions of if
and and into a single abstraction based on superficial
characteristics of programs they had seen before. Only one
student (P1) recognized the and syntax in a variable
assignment after seeing Boolean logic used within an if
statement, highlighting the challenge of abstracting out
similarities and transferring knowledge from one context to
another.
Inability to Recognize Matrix Concatenation. When asked

to explain code like Box 2, only one student (P7) was able to

recognize that it would create the matrix [‘B’ ‘A’] by
appending items to the empty matrix. This works by assigning
x the value of a new matrix, created from the old values of x
and an additional value.
The other students expressed some familiarity with the

matrix creation syntax, but they did not grasp that values were
being appended to the matrix. When it was suggested that the
code in Box 2 will create the matrix [‘B’, ‘A’], one
student said:

I don’t think that is true because if you want to write in
matrix format ... you have to do like x, say the first one,
then the second one. − P1
This student is familiar with the matrix creation syntax, but

they do not recognize that x = [x ‘B’] is a valid example of
matrix creation. They are confused by the use of a variable,
instead of only literal values. They appear to believe that the
matrices can only be created with a matrix literal, using literal
values for matrix elements, such as x = [‘B’ ‘A’]. Although
appending to a matrix uses the same matrix creation operation
as initializing the matrix with literal values, students were
unable to recognize the matrix creation operation. This

suggests that the student struggled to comprehend abstract
representations, which in this case involved seeing variables as
an abstract representation of values.
Students at this level would land in the Understand/Apply

cell in the Variables & Arrays strand of the taxonomy. They
understand how to work with arrays in one way, but they do
not yet have an understanding of the abstractions used to
analyze alternative solutions, such as appending with the
method used in Box 2. This limits their ability to transfer their
knowledge beyond the particularities of the programming
language-level artifacts that they have encountered before.
Difficulties with Functions. As can be seen in Figure 1,

functions were more difficult for students than either of the
other two strands, with five students (P3, P4, P5, P6, P8)
expressing misconceptions about functions. We describe some
of the salient misconceptions below.
Two students (P4, P8) appeared to have a general lack of

knowledge about functions�they did not seem to recognize
the syntax for calling functions, which meant they were unable
to correctly trace code that used user-defined or existing
MATLAB functions.
For example, consider line 2 in Box 3. The line in question

uses the preexisting MATLAB function zeros to create an
array of zeros. Referring to this line, one student said:

And the numbers are also a set of the zeros. − P8
The student believes that the zeros function is going to

modify the numbers variable. This implies that they did not
recognize that length(numbers) is itself a function call
that returns a value, which in turn is passed to the zeros
function. Moreover, the student struggled to explain the
function operation, leading to the gap in their understanding
that even if zeros were passed the numbers matrix
directly, numbers cannot be modified since MATLAB uses
pass-by-value semantics. The rest of this student’s explanation
of the square_evens function (Box 3) continued similarly.
Some students held more nuanced misconceptions.

Referencing code similar to lines 2 and 3 of Box 4, one
student said:

Calculating x & y based off of each other ... I would think
that we would need a value to start with. − P6
While partially correct, the student struggled in decompos-

ing the function and recognizing that x and y are defined as
parameters that get assigned values when the function is called
(9 and 6, respectively). From this, we get a glimpse of how
students struggle with the abstraction involved in functions:
they saw the function as a series of statements that were not
necessarily bound within a holistic unit of operation.

Box 2. One way to append values to a matrix in MATLAB.

Box 3. A complex function involving conditionals, prints,
and looping. This question asked students to predict the
value of the output variable after executing the snippet.

Journal of Chemical Education pubs.acs.org/jchemeduc Chemical Education Research

https://doi.org/10.1021/acs.jchemed.4c00219
J. Chem. Educ. XXXX, XXX, XXX−XXX

F

https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00219?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00219?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00219?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00219?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00219?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00219?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00219?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00219?fig=&ref=pdf
pubs.acs.org/jchemeduc?ref=pdf
https://doi.org/10.1021/acs.jchemed.4c00219?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

The challenge of decomposing a function to understand its
operation varied. For example, some students correctly
mapped arguments to parameters but did not understand the
scope of the parameters. When solving a problem similar to
Box 5, one student said:

a would be like x and then b would be y and c would be
z so b would probably be like 16. − P5
This demonstrates that they correctly mapped the argu-

ments to parameters, but they incorrectly believed that the
parameters to calculate are still defined on line 9, outside
the scope of the function.
Indeed, only P7, who was pursuing a CS minor and had

completed several prior programming courses, could explain
that line 9 would produce an error because b is undefined
outside the scope of the calculate function. Considering
that PChem involves teaching students to “write and use
custom functions”,2 the gap highlights the broader challenges
in teaching end-user programmers to grasp the abstractions
and decomposition required to transfer their knowledge to
different problems.

Attitudes toward Programming. Patterns also emerged
in the students’ attitudes toward programming. Overall, most
students viewed their programming skills as specific and
limited. One student (P7) was pursuing a CS minor and
displayed higher self-efficacy. However, unless otherwise
mentioned, the following observations hold true for the rest
of the students interviewed.
Students displayed an apparent sense of confidence with the

particular MATLAB elements that they had encountered in the
class but low self-efficacy about using those skills in a more
general context. PChem students tended to treat MATLAB as
an advanced graphing calculator, using it to solve difficult
equations and create high-quality plots. All students except P7
and P8 expressed this sentiment, exemplified in P1’s comment:

So I literally threw my calculator away and started doing
everything on MATLAB. − P1
In contrast, students reported low self-efficacy for general-

purpose programming. In fact, they did not believe that those
skills could transfer to general programming. When asked
“How do you feel about your computing abilities?”, one

student responded simply, “I feel like they’re pretty weak”
(P3). We heard this clearly in P5’s concern:

Within the limits of chemistry, I think I feel like very good
about my MATLAB skills ... But if you gave me something
like outside of that I wouldn’t really know what I’m doing.
− P5
Similarly, others found it daunting to transfer their skills

outside the of PChem class:
I don’t think I’d be able to take these skills outside of class
and use them elsewhere. − P2
This sentiment seemed to emerge from the students’

perception that their skills were closely tied to the particular
objectives that were established for them in the PChem class.

I want to say it’s ... from my perspective at least ... as a
calculator, so while calculating huge derivatives or taking
huge, you know, differentials, right? ... It’s a lot of copy and
paste code. − P1
The fact that they mentioned copying and pasting code

suggests that they were unable to grasp and work with the
fundamental ideas of MATLAB programming. The lack of
movement to more general programming problems seems to
hinder the students’ self-efficacy in transferring their knowl-
edge.

I know how to do explicitly what I’ve learned, and not much
else. − P6
Indeed, we heard similar concerns of not being able to move

beyond the particulars of MATLAB in PChem context
throughout our interviews:

I think with chemistry they do a really good job of teaching
us. But there’s no like okay we’re only going to be doing like
MATLAB and like learning the very basics of the basics. −
P5
The challenge in learning the fundamentals of (MATLAB)

programming did not seem to emerge from students’ lack of
motivation. In fact, students acknowledged that programming
is a growing part of research in many domains.

I should probably understand everything computationally
little bit more because that’s the way that the research is
moving and I think that’s, you know, an important part of
the research future. So I want to develop these skills more
but I’m like I don’t know what specific applications really
look like. − P3
The lack of movement to more generalizable knowledge

appeared to lead to the perception that MATLAB in and of
itself was limiting. Indeed, a student viewed the PChem
programming curriculum as nonauthentic because they were
using MATLAB and not Python:

We’re not learning Python or anything which I know is
what’s generally used on industry and a lot more out in the
field. − P8
Students had a sense that programming is important, but

they did not believe that the programming they were doing was
broadly useful or authentic. Such mismatch in perception can
degrade motivation, leading to worse learning outcomes.35

■ DISCUSSION
To deepen understanding of programming in contextualized
contexts like ours, we believe that instructors need to move
back and forth between higher-level ideas that are fundamental
in computing and contextualized encounters with examples
specific to the domain. Computing education literature posits
fundamental ideas in computing (e.g., refs 46−48): abstrac-
tion, decomposition, and metacognitive awareness. While the

Box 4. A short function that does not return anything. The
question asks the student to predict the values of x, y, a,
and b after the snippet has executed.

Box 5. An example problem that assesses understanding of
scope. The question asks the student what will be printed
after execution.

Journal of Chemical Education pubs.acs.org/jchemeduc Chemical Education Research

https://doi.org/10.1021/acs.jchemed.4c00219
J. Chem. Educ. XXXX, XXX, XXX−XXX

G

https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00219?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00219?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00219?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00219?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00219?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00219?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00219?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00219?fig=&ref=pdf
pubs.acs.org/jchemeduc?ref=pdf
https://doi.org/10.1021/acs.jchemed.4c00219?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ideas that are considered “fundamental” vary, there is a wide
agreement that these three are critical.49−51 In our findings, we
note that students differed in their abilities to engage with
these ideas. These three ideas are not exclusive to computing.
As we illustrate below, they are applied in different domains,
including PChem, thus allowing for synergistic presentation,
one where instructors can build on their domain expertise to
scaffold student learning.
The discussion in the following subsections is distilled into a

concise set of recommendations in Table 3.

Abstraction
Abstraction allows us to focus on salient details of a concept,
object, problem, or process while ignoring others.47,52 In the
task of learning programming, the goal is for learners to gain an
abstract understanding of programming concepts that can be
brought to bear on previously unseen programs or problems.
Lacking abstractions for programming concepts can lead to
brittle knowledge that is easily stymied by novel problems or
programs that look different from previously seen examples.
Students faced difficulties with abstraction in our end-user

programming context. For example, consider the students
whose mental models combined if and and into a single
programming construct. Encumbered by mental models that
are tightly bound to a limited set of examples, these students
are forced to assimilate unfamiliar-looking code into their
mental models “on-the-fly”.
Despite its importance, challenges remain in teaching

abstraction in early computer programming.53,54 For example,
Koppelman and Van Dijk53 argue that novice programmers are
asked to focus on the flow of control in programs, and this
hinders their ability to see abstraction being used in different
parts of the program. They posit the need for explicitly
introducing abstraction early in programming classes. Their
recommendation echoes other scholars’ arguments on the
importance of making moves between levels of abstraction
consciously.47,54,55 This challenge remains in courses that
provide contextualized introductions to programming.52

As we formulate strategies to introduce abstraction in the
context of learning programming, we acknowledge that
abstraction is also a critical skill in chemistry. Exploring an
integration of computer programming and chemistry educa-
tion, Gautam et al.52 demonstrate the need to build a
connection between abstractions used in chemistry with
abstractions used in programming. They demonstrate the
need to move between levels of abstraction, both laterally and

vertically. For example, consider chemical equations, which are
abstract representations of real-world phenomena, and the
similar abstraction skill necessary for computer programming
where modeling chemical reactions requires representations
using variables and expressions. They argue that such an
integration would enable students to learn to use abstraction,
and to more deeply learn through abstractions. We ought to
build on the strengths of instructors and students in end-user
programming who already have domain expertise leveraging
abstraction. Chemistry courses that include programming
should focus on helping students build the computing
abstractions necessary to engage more deeply with new
problems or programs.
There exist numerous strategies to help learners acquire this

abstract understanding. One strategy is to explicitly teach a
notional machine,27,29,30 i.e., an abstract model of the program
execution environment. Another strategy is to teach using
many relevant examples, each showing different representations
of the same concepts.56,57 Exposure to many representations or
orientations of the same concept can help students perceive
the abstract principles that underlie the surface-level character-
istics of any single example. In terms of program
comprehension, different example usages of Boolean ex-
pressions (e.g., used in if conditions, variable assignment
statements, or function arguments), coupled with explicit
instruction that “an expression is a syntactic entity that
evaluates to a value”, would help students develop an abstract
understanding of the notion of Boolean expressions. This, for
example, would dispel the “if-and” misconception that we
observed in our interviews.
Decomposition

Closely related to abstraction is the skill of decomposition. This
is the ability to apply knowledge of the particular features of a
system (e.g., the notional machine) to break down a problem
into manageable parts, solve those parts using familiar and
reusable patterns if available, and compose the solutions for
each part into a solution for the larger problem.58−62

Programming students’ skills with abstraction must be
augmented with skills for decomposition.
While decomposition is widely accepted as a critical practice

in learning programming,51,63 with a few notable excep-
tions,58,64,65 few studies have explicitly explored how we can
enable students to learn decomposition. Rich et al.58

conducted a literature review to identify 13 consensus goals
including “complex problems can be broken into smaller parts”
and “often existing code from other programs can be used to
solve parts of a decomposed problem”. Novice programmers
face challenges in learning and working on decomposi-
tion.44,66,67 For example, Lee et al.66 highlight that students
struggle to understand the difference between creating a
function and using a function through a function call. They
found that novice students tend to ignore reusing functions,
focusing mostly on creating new ones even when existing
functions could help. Indeed, our findings highlight similar
challenges faced by end-user programmers who struggled to
identify or use functions.
The practice of decomposition, that of breaking down a

problem into smaller manageable parts and reusing existing
solutions to solve the decomposed parts, is not unique to
computer science.68−73 For example, early chemistry education
scholars have posited the importance of scientific modeling
skills which requires breaking down a complex system into

Table 3. Recommendations for Teaching Programming to
Chemistry Students

topic recommendations

Abstraction Explicitly teach students about a chosen notional
machine.28

Use multiple representations of programming concepts to
promote abstraction and transfer learning.18

Relate abstractions used to solve programming problems
to those used in chemistry problems.52

Decomposition Use subgoals to divide programming problem-solving into
small steps.46

Show examples of code and function reuse.
Metacognitive
awareness

Teach an explicit programming problem-solving process,
such as the Design Recipe.20

Relate iterative problem solving in programming to
iterative problem-solving in chemistry.

Journal of Chemical Education pubs.acs.org/jchemeduc Chemical Education Research

https://doi.org/10.1021/acs.jchemed.4c00219
J. Chem. Educ. XXXX, XXX, XXX−XXX

H

pubs.acs.org/jchemeduc?ref=pdf
https://doi.org/10.1021/acs.jchemed.4c00219?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

smaller elements and mechanisms.72 More recently, systems
thinking practices have gained greater attention in science
education, which too has led to an emphasis on problem
decomposition.68,73 As we explore opportunities to support
undergraduate chemistry students in end-user programming,
we argue for building upon the students’ existing familiarity
with decomposition by drawing parallels between decom-
position in science and programming. In doing so, we echo
Rich et al.58 in arguing that decomposition ought to be a
central practice, and not just a content topic, in learning
computer programming.
Metacognitive Awareness

The final component, metacognitive awareness, refers to the
student’s ability to evaluate their own progress toward a
programming task (e.g., understanding a problem; planning,
writing, testing, and debugging a solution).
Consider the problem in Box 1. It asks the student to order a

series of variable assignment statements so that the variable x
ends up with a specified value. Some students, having the
facilities to engage in “planful” programming,23,45 began by
omitting the assignment statements that did not have any
direct or indirect effect on the variable of interest. Then they
ordered the rest of the statements based on dependencies
within them, ignoring more statements if necessary, before
arriving at a satisfactory sequence. They were able to
accomplish this task by tracing partial solutions while keeping
track of known intermediate information; this helped them
maintain an awareness of whether or not they were on the right
track toward solving the problem. Other students, lacking the
metacognitive skills needed to monitor their progress, resorted
to a brute-force approach to solving the problem, considering
permutations of assignment statements in a seemingly random
fashion until they arrived at a satisfactory ordering.
These aspects of metacognitive awareness and planful

programming are prevalent throughout a typical CS education,
but not in end-user programming education.3 To encourage
increased monitoring of one’s programming process, comput-
ing educators have advocated for teaching explicit problem-
solving strategies like the Design Recipe20 or Loksa et al.’s six-
step process.21 These strategies involve explicit steps for
confirming one’s understanding of the problem before one
starts programming a solution and for outlining a solution by
decomposing the problem into pieces that can be solved using
familiar patterns.41 Edwards et al.74 suggest using software
testing to move students away from “trial-and-error” styles of
programming (like some students in our case study) toward
more reflective, metacognitively aware programming problem-
solving.
This process of metacognitive awareness in problem-solving

is also common in chemistry. For example, consider the
problem of identifying a chemical compound’s structure from
its spectroscopic data. A student might begin with IR
spectroscopy and, observing a broad peak in the low 3000s
wavenumber range, would identify the presence of an O−H
stretch. Noting that multiple functional groups contain an O−
H stretch, the student might then turn to NMR spectroscopy
to narrow down the possibilities. Chemistry students already
have considerable facilities with this type of iterative problem-
solving process; we ought to leverage this in teaching
programming problem-solving.

■ CONCLUSION
We believe that would-be end-user programmers�such as the
students in our study�would benefit from instruction about
the fundamental ideas we have outlined: abstraction,
decomposition, and metacognitive awareness in problem-
solving. Difficulties with abstraction and planful programming
are commonly reported and�to an extent�addressed in CS 1
courses.75 They should also be addressed in end-user
programming contexts. The chemistry faculty teaching these
courses are updating the curriculum based on these
recommendations. Future work will evaluate the impact of
these changes on course performance, students’ confidence
with programming, and their intent to continue to learn and
use programming.
The three ideas discussed above are not an exhaustive list of

fundamental ideas in computing. Neither are they mutually
exclusive: mastering decomposition necessitates an under-
standing of abstraction, and evaluating one’s progress on a
problem requires the practices of abstraction and decom-
position. Nonetheless, we believe these ideas are necessary to
support students in transferring their knowledge of program-
ming to different contexts. Importantly, these ideas are not
unique to computer science. Drawing on non-CS students’
existing strengths in these areas would allow us to introduce
computing topics in a way that makes it easy for novices to
start learning but also provides them with room to develop
their skills beyond the initial coursework and work on more
sophisticated tasks.76,77

Non-CS majors are learning to program with increasing
frequency, and they will go on to conduct important work in
science and other domains. Though their goals are not to
become software engineers, they will engineer software,
potentially of a critical nature. Their programming education
should account for this.

■ AUTHOR INFORMATION

Corresponding Authors

Ashley Ringer McDonald − Department of Chemistry and
Biochemistry, Cal Poly, San Luis Obispo, California 93405,
United States; orcid.org/0000-0002-4381-1239;
Email: armcdona@calpoly.edu

Aakash Gautam − Department of Computer Science,
University of Pittsburgh, Pittsburgh, Pennsylvania 15260,
United States; Email: aakash@pitt.edu

Ayaan M. Kazerouni − Department of Computer Science and
Software Engineering, Cal Poly, San Luis Obispo, California
93405, United States; orcid.org/0000-0002-6574-1278;
Email: ayaank@calpoly.edu

Author

William Fuchs − Department of Computer Science and
Software Engineering, Cal Poly, San Luis Obispo, California
93405, United States; Present Address: Ridgeline, Inc

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jchemed.4c00219

Notes

The authors declare no competing financial interest.

Journal of Chemical Education pubs.acs.org/jchemeduc Chemical Education Research

https://doi.org/10.1021/acs.jchemed.4c00219
J. Chem. Educ. XXXX, XXX, XXX−XXX

I

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ashley+Ringer+McDonald"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-4381-1239
mailto:armcdona@calpoly.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Aakash+Gautam"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
mailto:aakash@pitt.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ayaan+M.+Kazerouni"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-6574-1278
mailto:ayaank@calpoly.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="William+Fuchs"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00219?ref=pdf
pubs.acs.org/jchemeduc?ref=pdf
https://doi.org/10.1021/acs.jchemed.4c00219?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

■ ACKNOWLEDGMENTS
A.R.M. acknowledges financial support from National Science
Foundation Award No. CHE-2136142.

■ REFERENCES
(1) Easterbrook, S. M. Climate Change: A Grand Software
Challenge. Proceedings of the FSE/SDP Workshop on Future of Software
Engineering Research; Association for Computing Machinery: New
York, NY, USA, 2010; pp 99−104.
(2) McDonald, A. R.; Hagen, J. P. Using Computational Methods
To Teach Chemical Principles. ACS Symposium Series 2019, 1312,
195−210.
(3) Ko, A. J.; Abraham, R.; Beckwith, L.; Blackwell, A.; Burnett, M.;
Erwig, M.; Scaffidi, C.; Lawrance, J.; Lieberman, H.; Myers, B.;
Rosson, M. B.; Rothermel, G.; Shaw, M.; Wiedenbeck, S. The State of
the Art in End-User Software Engineering. ACM Comput. Surv. 2011,
43, 1.
(4) Guzman, L. M.; Pennell, M. W.; Nikelski, E.; Srivastava, D. S.
Successful Integration of Data Science in Undergraduate Biostatistics
Courses Using Cognitive Load Theory. CBE�Life Sciences Education
2019, 18, ar49.
(5) Valle, D.; Berdanier, A. Computer programming skills for
environmental sciences. Bulletin of the Ecological Society of America
2012, 93, 373−389.
(6) Nardi, B. A. A Small Matter of Programming: Perspectives on End

User Computing, 1st ed.; MIT Press: Cambridge, MA, USA, 1993.
(7) Dorn, B.; Tew, A. E.; Guzdial, M. Introductory Computing
Construct Use in an End-User Programming Community. IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/
HCC 2007); IEEE: 2007; pp 27−32.
(8) Dorn, B.; Guzdial, M. Discovering Computing: Perspectives of
Web Designers. Proceedings of the Sixth International Workshop on
Computing Education Research; Association for Computing Machi-
nery: New York, NY, USA, 2010; pp 23−30.
(9) Dorn, B.; Guzdial, M. Learning on the Job: Characterizing the
Programming Knowledge and Learning Strategies of Web Designers.
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems; Association for Computing Machinery: New York, NY, USA,
2010; pp 703−712.
(10) Guzdial, M. A Media Computation Course for Non-Majors.

Proceedings of the 8th Annual Conference on Innovation and Technology
in Computer Science Education; Association for Computing Machinery:
New York, NY, USA, 2003; pp 104−108.
(11) Repenning, A.; Webb, D.; Ioannidou, A. Scalable Game Design
and the Development of a Checklist for Getting Computational
Thinking into Public Schools. Proceedings of the 41st ACM Technical
Symposium on Computer Science Education; Association for Computing
Machinery: New York, NY, USA, 2010; pp 265−269.
(12) Basawapatna, A.; Koh, K. H.; Repenning, A.; Webb, D. C.;
Marshall, K. S. Recognizing Computational Thinking Patterns.
Proceedings of the 42nd ACM Technical Symposium on Computer
Science Education; Association for Computing Machinery: New York,
NY, USA, 2011; pp 245−250.
(13) Wood, Z. J.; Clements, J.; Peterson, Z.; Janzen, D.; Smith, H.;
Haungs, M.; Workman, J.; Bellardo, J.; DeBruhl, B. Mixed Approaches
to CS0: Exploring Topic and Pedagogy Variance after Six Years of
CS0. Proceedings of the 49th ACM Technical Symposium on Computer
Science Education; Association for Computing Machinery: New York,
NY, USA, 2018; pp 20−25.
(14) Bart, A. C.; Whitcomb, R.; Kafura, D.; Shaffer, C. A.; Tilevich,
E. Computing with CORGIS: Diverse, Real-World Datasets for
Introductory Computing. Proceedings of the 2017 ACM SIGCSE
Technical Symposium on Computer Science Education; Association for
Computing Machinery: New York, NY, USA, 2017; pp 57−62.
(15) Kazerouni, A. M.; Lehr, J.; Wood, Z. Community-action
Computing: A Data-centric CS0 course. Proceedings of the 55th ACM
Technical Symposium on Computer Science Education; Association for
Computing Machinery: New York, NY, USA, 2024.

(16) McDonald, A. R.; Roberts, R.; Koeppe, J. R.; Hall, B. L.
Undergraduate structural biology education: A shift from users to
developers of computation and simulation tools. Curr. Opin. Struct.
Biol. 2022, 72, 39−45.
(17) Gick, M. L.; Holyoak, K. J. Schema induction and analogical
transfer. Cognitive psychology 1983, 15, 1−38.
(18) Bransford, J. D.; Brown, A. L.; Cocking, R. R.; et al. How People

Learn; National Academy Press: Washington, DC, 2000; Vol. 11.
(19) Burridge, J.; Fekete, A. Teaching Programming for First-Year
Data Science. Proceedings of the 27th ACM Conference on on Innovation
and Technology in Computer Science Education; Association for
Computing Machinery: New York, NY, USA, 2022; Vol. 1, pp
297−303.
(20) Felleisen, M.; Findler, R. B.; Flatt, M.; Krishnamurthi, S. How to

Design Programs: An Introduction to Programming and Computing;
MIT Press: 2018.
(21) Loksa, D.; Ko, A. J.; Jernigan, W.; Oleson, A.; Mendez, C. J.;
Burnett, M. M. Programming, problem solving, and self-awareness:
Effects of explicit guidance. Proceedings of the 2016 CHI Conference on
Human Factors in Computing Systems; Association for Computing
Machinery: 2016; pp 1449−1461.
(22) Prather, J.; Pettit, R.; McMurry, K.; Peters, A.; Homer, J.;
Cohen, M. Metacognitive Difficulties Faced by Novice Programmers
in Automated Assessment Tools. Proceedings of the 2018 ACM
Conference on International Computing Education Research; Association
for Computing Machinery: New York, NY, USA, 2018; pp 41−50.
(23) Prather, J.; Pettit, R.; Becker, B. A.; Denny, P.; Loksa, D.;
Peters, A.; Albrecht, Z.; Masci, K. First Things First: Providing
Metacognitive Scaffolding for Interpreting Problem Prompts.
Proceedings of the 50th ACM Technical Symposium on Computer
Science Education; Association for Computing Machinery: New York,
NY, USA, 2019; pp 531−537.
(24) Prather, J.; Becker, B. A.; Craig, M.; Denny, P.; Loksa, D.;
Margulieux, L. What Do We Think We Think We Are Doing?
Metacognition and Self-Regulation in Programming. Proceedings of the
2020 ACM Conference on International Computing Education Research;
Association for Computing Machinery: New York, NY, USA, 2020;
pp 2−13.
(25) Norman, D. A. In Mental Models; Gentner, D., Stevens, A. L.,
Eds.; Psychology Press: New York, 1983; pp 15−22.
(26) de Kleer, J.; Brown, J. S. In Cognitive Skills and Their

Acquisition; Anderson, J. R., Ed.; Psychology Press: 1981; Chapter 1.
(27) du Boulay, B.; O’Shea, T.; Monk, J. The black box inside the
glass box: presenting computing concepts to novices. International
Journal of Man-Machine Studies 1981, 14, 237−249.
(28) Sorva, J. Notional Machines and Introductory Programming
Education. ACM Trans. Comput. Educ. 2013, 13, 1.
(29) Ben-Ari, M. Constructivism in computer science education.

Journal of Computers in Mathematics and Science Teaching 2001, 20,
45−73.
(30) Dickson, P. E.; Brown, N. C. C.; Becker, B. A. Engage Against
the Machine: Rise of the Notional Machines as Effective Pedagogical
Devices. Proceedings of the 2020 ACM Conference on Innovation and
Technology in Computer Science Education; Association for Computing
Machinery: New York, NY, USA, 2020; pp 159−165.
(31) Baiz, C. R.; Berger, R. F.; Donald, K. J.; de Paula, J. C.; Fried, S.
D.; Rubenstein, B.; Stokes, G. Y.; Takematsu, K.; Londergan, C.
Lowering Activation Barriers to Success in Physical Chemistry
(LABSIP): A Community Project. J. Phys. Chem. A 2024, 128, 3.
(32) DeTar, D. F. A computer program for making steady state
calculations: Notes on effective programming techniques. J. Chem.
Educ. 1967, 44, 193.
(33) Kim, H. Computer programming in physical chemistry
laboratory: Least-squares analysis. J. Chem. Educ. 1970, 47, 120.
(34) Wanzer, D.; McKlin, T.; Edwards, D.; Freeman, J.; Magerko, B.
Assessing the Attitudes Towards Computing Scale: A Survey
Validation Study. Proceedings of the 50th ACM Technical Symposium
on Computer Science Education; Association for Computing Machi-
nery: New York, NY, USA, 2019; pp 859−865.

Journal of Chemical Education pubs.acs.org/jchemeduc Chemical Education Research

https://doi.org/10.1021/acs.jchemed.4c00219
J. Chem. Educ. XXXX, XXX, XXX−XXX

J

https://doi.org/10.1021/bk-2019-1312.ch014?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/bk-2019-1312.ch014?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1145/1922649.1922658
https://doi.org/10.1145/1922649.1922658
https://doi.org/10.1187/cbe.19-02-0041
https://doi.org/10.1187/cbe.19-02-0041
https://doi.org/10.1890/0012-9623-93.4.373
https://doi.org/10.1890/0012-9623-93.4.373
https://doi.org/10.1016/j.sbi.2021.07.012
https://doi.org/10.1016/j.sbi.2021.07.012
https://doi.org/10.1016/0010-0285(83)90002-6
https://doi.org/10.1016/0010-0285(83)90002-6
https://doi.org/10.1016/S0020-7373(81)80056-9
https://doi.org/10.1016/S0020-7373(81)80056-9
https://doi.org/10.1145/2483710.2483713
https://doi.org/10.1145/2483710.2483713
https://doi.org/10.1021/acs.jpca.3c07015?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpca.3c07015?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ed044p193?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ed044p193?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ed047p120?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ed047p120?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/jchemeduc?ref=pdf
https://doi.org/10.1021/acs.jchemed.4c00219?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

(35) Jones, B. D. Motivating students to engage in learning: the
MUSIC model of academic motivation. International Journal of
Teaching and Learning in Higher Education 2009, 21, 272−285.
(36) Barach, A. E.; Jenkins, C.; Gunawardena, S. S.; Kecskemety, K.
M. MCS1: A MATLAB Programming Concept Inventory for
Assessing First-year Engineering Courses. 2020 ASEE Virtual Annual
Conference Content Access [Virtual Online]; 2020. https://peer.asee.
org/34958.
(37) Parker, M. C.; Guzdial, M.; Engleman, S. Replication,
Validation, and Use of a Language Independent CS1 Knowledge
Assessment. Proceedings of the 2016 ACM Conference on International
Computing Education Research; Association for Computing Machi-
nery: New York, NY, USA, 2016; pp 93−101.
(38) Parker, M. C.; Guzdial, M.; Tew, A. E. Uses, Revisions, and the
Future of Validated Assessments in Computing Education: A Case
Study of the FCS1 and SCS1. Proceedings of the 17th ACM Conference
on International Computing Education Research; Association for
Computing Machinery: 2021; pp 60−68.
(39) Strauss, A.; Corbin, J. M. Grounded Theory in Practice; Sage:
1997.
(40) Fuller, U.; Johnson, C. G.; Ahoniemi, T.; Cukierman, D.;
Hernán-Losada, I.; Jackova, J.; Lahtinen, E.; Lewis, T. L.; Thompson,
D. M.; Riedesel, C.; Thompson, E. Developing a computer science-
specific learning taxonomy. ACM SIGCSE Bulletin 2007, 39, 152−
170.
(41) Xie, B.; Loksa, D.; Nelson, G. L.; Davidson, M. J.; Dong, D.;
Kwik, H.; Tan, A. H.; Hwa, L.; Li, M.; Ko, A. J. A theory of instruction
for introductory programming skills. Computer Science Education
2019, 29, 205−253.
(42) Castro, F. E. V.; Fisler, K. Designing a Multi-Faceted SOLO
Taxonomy to Track Program Design Skills through an Entire Course.
Proceedings of the 17th Koli Calling International Conference on
Computing Education Research; Association for Computing Machi-
nery: New York, NY, USA, 2017; pp 10−19.
(43) Pea, R. D.; Soloway, E.; Spohrer, J. C. The buggy path to the
development of programming expertise. Focus on Learning Problems in
Mathematics 1987, 9, 5−30.
(44) Castro, F. E. V.; Fisler, K. Proceedings of the 51st ACM Technical

Symposium on Computer Science Education; Association for Computing
Machinery: New York, NY, USA, 2020; pp 487−493.
(45) Pennington, N. Stimulus structures and mental representations
in expert comprehension of computer programs. Cognitive Psychology
1987, 19, 295−341.
(46) Margulieux, L. E.; Morrison, B. B.; Decker, A. Design and pilot
testing of subgoal labeled worked examples for five core concepts in
CS1. Proceedings of the 2019 ACM Conference on Innovation and
Technology in Computer Science Education; Association for Computing
Machinery: 2019; pp 548−554.
(47) Kramer, J. Is abstraction the key to computing? Communications

of the ACM 2007, 50, 36−42.
(48) Bennedsen, J.; Caspersen, M. E. Programming in context: a
model-first approach to CS1. Proceedings of the 35th SIGCSE Technical
Symposium on Computer Science Education; Association for Computing
Machinery: 2004; pp 477−481.
(49) Dijkstra, E. W. The humble programmer. Communications of the

ACM 1972, 15, 859−866.
(50) Hazzan, O. How students attempt to reduce abstraction in the
learning of mathematics and in the learning of computer science.
Computer Science Education 2003, 13, 95−122.
(51) Lee, I.; Martin, F.; Denner, J.; Coulter, B.; Allan, W.; Erickson,
J.; Malyn-Smith, J.; Werner, L. Computational thinking for youth in
practice. Acm Inroads 2011, 2, 32−37.
(52) Gautam, A.; Bortz, W.; Tatar, D. Proceedings of the 51st ACM

Technical Symposium on Computer Science Education; Association for
Computing Machinery: New York, NY, USA, 2020; pp 393−399.
(53) Koppelman, H.; Van Dijk, B. Teaching abstraction in
introductory courses. Proceedings of the Fifteenth Annual Conference
on Innovation and Technology in Computer Science Education;
Association for Computing Machinery: 2010; pp 174−178.

(54) Hazzan, O. Reflections on teaching abstraction and other soft
ideas. ACM SIGCSE Bulletin 2008, 40, 40−43.
(55) Victor, B. Up and down the ladder of abstraction. 2011. http://
worrydream.com/LadderOfAbstraction/ (accessed 2023-03-04).
(56) Ainsworth, S. Visualization: Theory and Practice in Science

Education; Springer: 2008; pp 191−208.
(57) Kozma, R. The material features of multiple representations
and their cognitive and social affordances for science understanding.
Learning and instruction 2003, 13, 205−226.
(58) Rich, K. M.; Binkowski, T. A.; Strickland, C.; Franklin, D.
Decomposition: A K-8 computational thinking learning trajectory.
Proceedings of the 2018 ACM Conference on International Computing
Education Research; Association for Computing Machinery: 2018; pp
124−132.
(59) K-12 Computer Science Framework Steering Committee. K-12

Computer Science Framework; ACM: 2016.
(60) Seehorn, D.; Carey, S.; Fuschetto, B.; Lee, I.; Moix, D.;
O’Grady-Cunniff, D.; Owens, B. B.; Stephenson, C.; Verno, A. CSTA
K−12 Computer Science Standards: Revised 2011; ACM: 2011.
(61) Ioannidou, A.; Bennett, V.; Repenning, A.; Koh, K. H.;
Basawapatna, A. Computational Thinking Patterns. Presented at the
2011 Annual Meeting of the American Educational Research
Association (AERA).
(62) Schanzer, E.; Fisler, K.; Krishnamurthi, S.; Felleisen, M.
Transferring skills at solving word problems from computing to
algebra through Bootstrap. Proceedings of the 46th ACM Technical
Symposium on Computer Science Education; Association for Computing
Machinery: 2015; pp 616−621.
(63) Brennan, K.; Resnick, M. New frameworks for studying and
assessing the development of computational thinking. Proceedings of
the 2012 Annual Meeting of the American Educational Research
Association; AERA: 2012; p 25.
(64) Keen, A.; Mammen, K. Program decomposition and complexity
in CS1. Proceedings of the 46th ACM Technical Symposium on
Computer Science Education; Association for Computing Machinery:
2015; pp 48−53.
(65) Muller, O.; Ginat, D.; Haberman, B. Pattern-oriented
instruction and its influence on problem decomposition and solution
construction. Proceedings of the 12th Annual SIGCSE Conference on
Innovation and Technology in Computer Science Education; Association
for Computing Machinery: 2007; pp 151−155.
(66) Lee, M. J.; Bahmani, F.; Kwan, I.; LaFerte, J.; Charters, P.;
Horvath, A.; Luor, F.; Cao, J.; Law, C.; Beswetherick, M.;
et al.Principles of a debugging-first puzzle game for computing
education. 2014 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC); IEEE: 2014; pp 57−64.
(67) Meerbaum-Salant, O.; Armoni, M.; Ben-Ari, M. Habits of
programming in scratch. Proceedings of the 16th Annual Joint
Conference on Innovation and Technology in Computer Science
Education; Association for Computing Machinery: 2011; pp 168−172.
(68) Gregg, C.; Tychonievich, L.; Cohoon, J.; Hazelwood, K.
EcoSim: a language and experience teaching parallel programming in
elementary school. Proceedings of the 43rd ACM Technical Symposium
on Computer Science Education; Association for Computing Machi-
nery: 2012; pp 51−56.
(69) Jacobson, M. J.; Wilensky, U. Complex systems in education:
Scientific and educational importance and implications for the
learning sciences. Journal of the learning sciences 2006, 15, 11−34.
(70) Voss, J. F.; Greene, T. R.; Post, T. A.; Penner, B. C. Psychology

of Learning and Motivation; Elsevier: 1983; Vol. 17, pp 165−213.
(71) Polya, G. How to Solve It: A New Aspect of Mathematical

Method; Princeton University Press: 2004.
(72) Nersessian, N. J. How do scientists think? Capturing the
dynamics of conceptual change in science. Cognitive Models of Science;
Giere, R., Ed.; Minnesota Studies in the Philosophy of Science 15;
University of Minnesota Press: 1992; pp 3−44.
(73) Hmelo, C. E.; Holton, D. L.; Kolodner, J. L. Designing to learn
about complex systems. journal of the learning sciences 2000, 9, 247−
298.

Journal of Chemical Education pubs.acs.org/jchemeduc Chemical Education Research

https://doi.org/10.1021/acs.jchemed.4c00219
J. Chem. Educ. XXXX, XXX, XXX−XXX

K

https://peer.asee.org/34958
https://peer.asee.org/34958
https://doi.org/10.1145/1345375.1345438
https://doi.org/10.1145/1345375.1345438
https://doi.org/10.1080/08993408.2019.1565235
https://doi.org/10.1080/08993408.2019.1565235
https://doi.org/10.1016/0010-0285(87)90007-7
https://doi.org/10.1016/0010-0285(87)90007-7
https://doi.org/10.1145/1232743.1232745
https://doi.org/10.1145/355604.361591
https://doi.org/10.1076/csed.13.2.95.14202
https://doi.org/10.1076/csed.13.2.95.14202
https://doi.org/10.1145/1929887.1929902
https://doi.org/10.1145/1929887.1929902
https://doi.org/10.1145/1383602.1383631
https://doi.org/10.1145/1383602.1383631
http://worrydream.com/LadderOfAbstraction/
http://worrydream.com/LadderOfAbstraction/
https://doi.org/10.1016/S0959-4752(02)00021-X
https://doi.org/10.1016/S0959-4752(02)00021-X
https://doi.org/10.1207/s15327809jls1501_4
https://doi.org/10.1207/s15327809jls1501_4
https://doi.org/10.1207/s15327809jls1501_4
https://doi.org/10.1207/S15327809JLS0903_2
https://doi.org/10.1207/S15327809JLS0903_2
pubs.acs.org/jchemeduc?ref=pdf
https://doi.org/10.1021/acs.jchemed.4c00219?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

(74) Edwards, S. H. Using software testing to move students from
trial-and-error to reflection-in-action. ACM SIGCSE Bulletin 2004, 36,
26.
(75) Sorva, J. Visual Program Simulation in Introductory Programming

Education; Aalto University Publication Series Doctoral Dissertations
61/2012; School of Science, Aalto University: Espoo, 2012.
(76) Papert, S. A. Mindstorms: Children, Computers, and Powerful

Ideas; Basic Books: 2020.
(77) Resnick, M. Falling in love with Seymour’s ideas. Presented at
the American Educational Research Association (AERA) Annual
Conference.
(78) This took place during online instruction due to the COVID-19
pandemic.
(79) We omitted “I consider myself as a scientist, technologist,
engineer, or mathematician”, since we are interested in students’
computing identities, disentangled from their identities as chemists and
biochemists.
(80) These terms constituted our institution’s return to in-person
instruction during the COVID-19 pandemic.
(81) Two levels from Fuller et al.’s taxonomy are not depicted: the

evaluate level on the interpreting axis, because no students displayed
that ability level, and the create level on the producing axis, because
our interviews did not ask students to create any code from scratch.

Journal of Chemical Education pubs.acs.org/jchemeduc Chemical Education Research

https://doi.org/10.1021/acs.jchemed.4c00219
J. Chem. Educ. XXXX, XXX, XXX−XXX

L

https://doi.org/10.1145/1028174.971312
https://doi.org/10.1145/1028174.971312
pubs.acs.org/jchemeduc?ref=pdf
https://doi.org/10.1021/acs.jchemed.4c00219?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

