
Exploring the Impact of Cognitive Awareness Scaffolding for
Debugging in an Introductory Computer Science Class

Jiwon Lee
jlee671@calpoly.edu

California Polytechnic State University
San Luis Obispo, California, USA

Ayaan M. Kazerouni
ayaank@calpoly.edu

California Polytechnic State University
San Luis Obispo, California, USA

Christopher Siu
cesiu@calpoly.edu

California Polytechnic State University
San Luis Obispo, California, USA

Theresa Migler
tmigler@calpoly.edu

California Polytechnic State University
San Luis Obispo, California, USA

ABSTRACT
Debugging involves the simultaneous application of a number of
programming skills—reading code, writing code, problem compre-
hension, etc. This makes it a challenging activity for novice pro-
grammers. Unfortunately, debugging is rarely taught explicitly in
introductory programming courses, and is often learned as an im-
plicit goal through programming assignments. In this experience
report we explore the impact of a cognitive awareness scaffold to
help students monitor their progress as they debug their code. We
created a simple form that students used to document their debug-
ging process when they ran into bugs. The form asks questions
that students are likely to be asked by course staff during office
hours, e.g., “What have you tried so far?”. This act of verbalizing
errors and enumerating successful and unsuccessful strategies to
fix them is meant to help students monitor their own debugging
progress. We examined the cognitive awareness demonstrated in
form responses, finding that responses were more superficial on
projects of higher difficulty. Additionally, we gave students an exit
survey to measure the perceived impact of the debugging form on
students’ ability to regulate their debugging process and their con-
fidence while debugging. Students indicated that the form helped
them better verbalize errors in their programs, and helped them
surmount problems with which they would otherwise have needed
help.

CCS CONCEPTS
• Social and professional topics→ Computing education.

KEYWORDS
computing education, debugging, cognitive awareness scaffolding

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9431-4/23/03. . . $15.00
https://doi.org/10.1145/3545945.3569871

ACM Reference Format:
Jiwon Lee, Ayaan M. Kazerouni, Christopher Siu, and Theresa Migler. 2023.
Exploring the Impact of Cognitive Awareness Scaffolding for Debugging in
an Introductory Computer Science Class. In Proceedings of the 54th ACM
Technical Symposium on Computing Science Education V. 1 (SIGCSE 2023),
March 15–18, 2023, Toronto, ON, Canada. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3545945.3569871

1 INTRODUCTION
Debugging is an important skill that many novices find quite diffi-
cult. During a debugging task, a novice must have a fair amount of
metacognitive awareness to help monitor their progress and keep
track of strategies that have been successful and unsuccessful. There
is evidence that suggests that scaffolding for metacognitive aware-
ness helps with problem-solving. We report on an experience with
cognitive awareness scaffold that we gave to students in an intro-
ductory programming course to help themmonitor their debugging
processes. We designed a form that students could use to document
their debugging processes as they worked through course projects.
This debugging form focuses on helping students to recognize the
initial steps of debugging and to organize their thoughts. It was
designed based on research about metacognitive awareness and
the authors’ own experiences as instructors to effectively guide
students in debugging.

When students reach out to course staff for help fixing bugs
in their code, they are often asked questions like “What do you
understand about this bug so far?” and “What have you tried so
far?” Questions like these induce students to take a step back from
their ongoing approach and to consider the problem anew. The act
of verbalizing the difference between what the program should do
and what the program does do often leads to an “aha!” moment for
students, following which they are able to locate and remove bugs
with minimal guidance. Indeed, this is is the idea behind so-called
“rubber-duck debugging” [5]. To facilitate this process, we propose a
simple documentation method to help students maintain cognitive
awareness as they approach a debugging task.

We gave students a form to use for this process. It was used by
students in a 10 week-long introductory computer science class at
a medium-sized primarily undergraduate public university in the
USA. Students filled out the form for “major bugs” (defined as such
by themselves) for three programming assignments in the class. At
the end of the term, we deployed an exit survey to learn about the

https://doi.org/10.1145/3545945.3569871
https://doi.org/10.1145/3545945.3569871

SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada Lee et al.

perceived impact of the form. Additionally, we explored the level
of metacognitive awareness demonstrated on the form responses
and their relationships with project performance.

Students reported that the form helped them to verbalize their
errors, and that using the form helped them fix bugs with which
they would otherwise have needed help from course staff. While
we observed the trend that students tended to display higher levels
of metacognitive awareness on projects with higher average scores,
this relationship did not hold up to statistical analysis.

2 BACKGROUND
Debugging. Debugging is the process of locating and fixing defects
in a software project after they have been revealed. It is a natural
and important part of programming.

Debugging can generally be broken down into four steps: Un-
derstand, diagnose, locate, and correct [8, 13]. Once a programmer
realizes the program did not execute as they intended, they know
a defect exists. Then they might start to build and check their hy-
potheses about what exactly is going wrong. After the diagnosis,
the programmer tries to locate the bug and fix it.

Debugging is a challenging process for both experts and novices
(e.g., [1, 10]). Programmers may go through the process above sev-
eral times, during which they may run into a number of roadblocks.
For example, a programmer might be unable to locate a bug after
identifying that a defect exists. Or, they may successfully locate the
bug but not know how to fix it. They may even introduce new bugs
while investigating existing defects.

Novices in particular face a number of challenges while debug-
ging. One major hurdle they must overcome is the discrepancy
between natural language communication and the reading and
writing of programs [16]. For example, Pea et al. describe novices
expecting computers to somehow infer their intent from incom-
plete or incorrect code, leading to difficulties locating bugs in their
code. Katz & Anderson observed that it is clear that debugging is
not a single activity, but a set of activities where each component
may be performed differently depending on the situation [8]. Mur-
phy et al. portrayed novice debuggers as new drivers who “must
learn to steer, accelerate, brake, etc. all at once” and observed that
“novice debuggers must applymany new skills simultaneously” [14].
For example, several studies suggest that the difference between
novice and expert programmers in debugging is due to differences
in problem comprehension ability [4, 15, 20]. Gugerty & Olson
observed that experts were faster and more successful at finding
bugs in simple programs compared to novice subjects [4]. They
suggest that “the primary reason for the experts’ superiority was
the ease with which they understood what the program does and
is supposed to do” which allowed them to quickly isolate the bug.
This suggests that both program and problem comprehension are
important preconditions for successful debugging.

A plethora of tooling exists to aid in the debugging process. Lay-
man et al. noted that 15 professional software engineers mentioned
16 distinct debugging tools varying according to their application
domain. Murphy et al. [14] and Mansur et al. [12] note that students
employ a number of tools and strategies to locate bugs, e.g., simple
print statements, the in-IDE debugger, unit tests, or even manual

program tracing. Both sets of authors note that some strategies
were used ineffectively or inconsistently.

Metacognition. Metacognition is generally understood to be
the knowledge one has about one’s own cognition [3]. When a
problem-solver is metacognitive, they are aware of strategies for
accomplishing their task, they can monitor their progress, and can
evaluate the effectiveness of different available strategies [17].

Metacognition is important in programming and programming
education. For example, a number of papers (e.g., [18, 21]) have
observed that novice programming students often incorrectly in-
terpret the problem prompt, leading to them solving the wrong
problem entirely without realizing it. After interventions in which
students were asked to explicitly demonstrate their understanding
of the problem before starting to write code (e.g., by creating test
cases), researchers noted improved metacognitive skills and better
understanding of problem prompts [18].

In another study, Loksa et al. proposed a new approach to explic-
itly teach problem-solving skills consisting of 1) explicit instruction
on programming problem solving, 2) a method of visualizing and
monitoring progress through six problem-solving stages, 3) explicit
prompts for learners to reflect on their strategies when seeking
help from instructors, and 4) context-sensitive help embedded in a
code editor [11]. They found that students who received the explicit
instruction were more cognitively aware than students who did not
receive the instruction; they were better able to articulate solution
strategies. Moreover, they were also more likely to attempt solution
implementations before asking for help.

Guidance about explicit programming strategies is not only help-
ful to novices, but also to intermediate- and expert-level program-
mers. LaToza et al. found that when programmers were given ex-
plicit strategies to follow, they found their work to be more or-
ganized and systematic, and were more successful at completing
design and debugging tasks [9].

These studies demonstrate that promoting metacognitive aware-
ness, be it about checking one’s own understanding of a prob-
lem prompt, or monitoring one’s own progress through problem-
solving, has a positive impact on one’s ability to solve programming
problems. So too for debugging: Murphy et al. suggest that such
scaffolds ought to be incorporated into debugging instruction [14].

This paper reports on an experience with providing students
with a cognitive awareness scaffold to be used during the debugging
process. Students often seek help from various sources, including
instructors in office hours, when they discover bugs in their pro-
grams [2]. Following Ren et al. [19], we designed a form to be filled
by students when they run into bugs in their software, in which
they are asked to self-assess their progress toward locating and
fixing the bug. We studied the cognitive awareness demonstrated in
these entries and their relationship with eventual project outcomes.

3 STUDY CONTEXT
Our study focused on students in a CS 2-level data structures course
at Cal Poly, a medium-sized primarily undergraduate public univer-
sity in the USA. Data was collected during the Spring (March–June)
quarter of 2022.

Exploring the Impact of Cognitive Awareness Scaffolding for Debugging in an Introductory Computer Science Class SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada

This CS 2 course is a suitable test-bed in which to study the
students’ debugging awareness. Students in the course have pre-
viously completed a CS 0 and CS 1 course or equivalent material
prior to entering our university. That is, they have had roughly
two quarters of programming experience. This allows us to focus
on issues specific to debugging programs, rather than elementary
difficulties with reading and writing programs.

The five assignments in the course were completed using Python.
Project 1 was excluded because its specification was published
before we introduced our intervention. Project 5 was excluded
because its deadline did not meet our timeline for analysis. Our
intervention was therefore applied during the middle three projects
(Projects 2, 3, and 4) in the quarter.

Projects generally involved implementing or applying data struc-
tures. Project 2 was based on stacks and the Shunting Yard algo-
rithm; Project 3 was based on binary trees and Huffman coding;
Project 4 was based on hash tables and text indexing.

Students were given roughly a week to work on each project,
during which time they received limited feedback from an auto-
grader. They received autograder feedback roughly four times per
project, based on a suite of reference tests written by the instructors.
If multiple errors existed, students were only given detailed feed-
back about the first one. If a student’s submission did not include
unit tests of their own with line coverage, they did not receive any
detailed feedback at all. This helped avoid students’ relying on the
autograder for their own testing.

4 DEBUGGING FORM
We designed the debugging form to act as a conversation between
the students and instructor. Murphy et al. suggested that “debugging
instruction should incorporate these metacognitive factors, perhaps
taking the form of self-questions”. For example, they suggested
“What else could I try?”, “Is this too much to keep track of in my
head?”, and “What are other possible sources of the bug?”. We tried
to design the debugging form in a way that students would ask
themselves such questions while filling out the form.

The form contained five fields: Issue Category, Issue Description,
Previous Attempts, Solved by Myself, and Asked Question.

Issue Category The first part of debugging form is identifying
which debugging stage students are stuck at.

Below are the categories of debugging stages we provided on
the debugging form.

• Understanding an error
• Locating an error
• Testing an error
• Fixing an error
• Auto-grader Feedback
• Other

Students’ project code submissions are graded by an auto-grader
where students receive feedback based on the run. Since the auto-
grader error messages are one of the resources students utilize in
the course setting for debugging, we included this as one of the
categories, “Auto-grader Feedback”.

Issue Description This section is one of the most important
sections of the debugging form. Students were instructed to explain
the error in their own words so that they could reflect on their

thoughts. Unlike simply copying the stack trace error message,
describing it in their ownwords promotes metacognitive awareness.
In essence, this section asks students to reflect on their thought
processes on each debugging stage such as “What does this error
mean?" or “Where is the error happening?".

Previous Attempts This section is another important section
of the form. Students are asked to document what they have tried
to solve the issue they identified in the previous sections “Issue
Category" and “Issue Description". Students could list resources
they utilized or simply write down what modifications they made
in their code. We wanted this section to ask students “What have I
tried?" and “What else could I try?".

Solved by Myself: Here students state whether they solved the
bug by themselves or not.

Asked Question Here students state whether they asked the
instructor about the particular bug or not.

5 METHODOLOGY
The debugging form was introduced to students in four sections of
the CS 2 course described in Section 3, taught by two instructors.
One instructor taught one section, and the other, three sections.
All sections included identical content, assignments, and exams.
The course involved relatively small lab assignments which were
often completed in class during lab time. The course also involved
projects which were larger and more complex than lab assignments,
and were worked on individually on outside class.

Students voluntarily filled out our debugging forms and submit-
ted them as a part of their project submissions. The submitted forms
were not graded and their contents did not affect students’ project
scores. For each project students were offered 3% extra credit for
submitting a form, but only if their form had at least two entries.

5.1 Form Instructions
To help students familiarize themselves with the idea of the debug-
ging form, we suggested that it was a written version of what they
would have explained to their instructors when asking questions.

We asked students to fill out the form during the debugging
process because we believe that support should be provided while
they are debugging to help with their thought processes. Kapa
also noted that learning environments which supply metacognitive
support during the process of problem-solving are significantly
more effective than those that provide the same support at the end
of the process or those that do not provide any support [7].

To be as unintrusive as possible, students were also instructed to
fill out the debugging form when fixing “major” bugs. We let them
define what “major” means, since we did not want to put too much
restriction on what they should be logging.

Additionally, students were required to present specific entries
from their debugging forms whenever they asked an instructor
about a bug or asked an instructor to look at their code or error
messages. Having students present their debugging forms also
allowed us to observe that students were actually filling them out.
This emulates one of the interventions designed by Loksa et al.,
who asked students requesting help to describe their problem, their
attempted solutions, and their current problem-solving stage [11].
We did not require students to present forms when asking questions

SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada Lee et al.

on the class forum, since formulating a post would (ideally) involve
some self-reflection about what one has already tried.

We note that if a student has to ask their instructor about a bug,
that must be a “major” bug, since seeking help from instructors
tends to be a last resort for many students [2]. However, sometimes
students simply do not knowwhere to begin tracking down an error.
We did not want to discourage students from asking questions due
to the pressure of having to write something down beforehand. So
we allowed for the “previous attempts” field on the form to indicate
that the student did not know where to start. This non-committal
response was not abused: there were only 3 such entries for Project
2, 2 for Project 3, and 0 for Project 4.

5.2 Exit Survey
We created an exit survey to understand how helpful the students
found the debugging form. Question types included Likert type
questions, Yes/No/Maybe questions, and one free-response question.
In our survey, Likert scale response consists of a 5-point scale from
1-Extremely Disagree to 5-Extremely Agree. Survey questions and
results are summarized in Table 1.

We used the survey to understand whether the debugging form
helped students “be metacognitive” about the debugging process.
Specifically, we would like to know if the form helped students
to understand and verbalize their bugs and errors (Q2–Q3), and
helped them monitor their progress toward addressing a bug or
error (Q4). Anecdotally, we noticed several “aha” moments while
helping students, where they themselves identify an approach they
could take to fix the bug. In Q5, we would like to know if the process
of filling out the form led to any of these moments, precluding the
need to seek help from course staff. Although self-efficacy is out of
the scope of this study, we wanted to know if filling out the form
had an impact on students’ confidence in approaching debugging
(Q6). Finally, the survey gave students an opportunity to provide
anonymous free-response feedback, which we discuss in Section 6.

6 SURVEY ANALYSIS
A total of 38 students (out of 140) filled out the exit survey. (Unlike
the debugging forms, students were not incentivized to complete
the exit survey at the end of the term.) Of these, 2 did not give us
consent to use their responses, and 3 mentioned that they never
used the debugging form in spite of taking the survey. After filtering
out these responses, we ended up with 33 responses for our analysis.
Of these 33, 2 did not consent to the use of their project grades
in the analysis—their responses are not included in any analysis
involving project grades.

The survey contained 4 Likert-type questions, with responses
ranging from Extremely disagree to Extremely agree.

6.1 Survey Results
We present summary statistics for responses to each question.

Q1: Have you used this type of documentation method in
the past? Themethod of documenting ones debugging process was
unknown to most participants. Out of 33 responses, 4 participants
responded Yes (12%) and 29 participants responded No (88%).

Q2: The debugging form helpedmewith verbalizing errors.
The median student Somewhat agreed that the debugging form

helped them to verbalize errors in their programs, suggesting that
they seemed to find the form activity helpful.

Q3: The debugging form helped me with explaining the
debugging progress to instructors We expected the distribution
of responses to be similar to Question 2, because we expected that
verbalization ability would be correlated with explanation ability.
However, students were Neutral about how much the debugging
form helped them explain the debugging process to instructors.

Q4: The debugging form helped me stay aware of my de-
bugging progress. This question aimed to measure participants’
knowledge of their debugging process, i.e., if participants were
aware of the debugging stage they were in and the problem they
were trying to solve. Again, the median participant was Neutral in
their response to this question.

Q5: I have solved at least one bug that I was going to ask
instructors about while filling out the debugging form.

Question 5 asked participants if they have solved at least one bug
that they were going to ask instructors about while filling out the
debugging form. Out of 33 responses, 24 participants responded Yes
(73%) and 9 participants responded No (27%). This suggests that the
debugging form may have promoted independence in participants’
debugging processes.

Q6: I feel more confident in approaching debugging pro-
cess because I learned and used the debugging forms. The
median student was Neutral in their response to this question, sug-
gesting that students did not feel that using the form made them
feel more confident about approaching a bug in their program.

Q7: Do you see yourself utilizing this type of method in
future computer science classes? Out of 33 responses, 9 partici-
pants responded Yes, 7 participants responded No, and 17 partici-
pants responded Maybe.

Q8 (Optional): Please feel free to share any comments in
this section. Any positive/negative/neutral experience with
debugging form?

From the optional free response question, we identified two
confusions participants might have experienced.

First, we learned that some participants used the debugging form
after they had completely solved the bug.

The formswould be extremely helpful had I used them
during the debugging process. However, I used the
forms after the fact. –Participant 37

Most of the time when I was using the debugging
form, I had already solved the problem ages ago and
was filling the form out afterward. –Participant 14

More monitoring and guidance about how and when to use the
forms might have been warranted. For example, Participant 26
mentioned that using the form “broke up [their] thinking process
by making [them] fill out the form” during debugging.

Second, there was a misunderstanding related to the “Issue Cate-
gory” field on the form. The provided options for “Issue Category"
were steps of debugging we identified through a review of the liter-
ature. Our intention was for participants to identify what stage they
are at with solving the bug, for example “I am trying to understand
the error" or “I understand the error but do not know how to fix it".
However, we received comments that imply the “Issue Category”

Exploring the Impact of Cognitive Awareness Scaffolding for Debugging in an Introductory Computer Science Class SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada

Table 1: Survey questions and results. For the Likert-type questions, the median response is provided.

Question Results

1 Have you used this type of documentation method in the past? 12% Yes, 88% No

2 The debugging form helped me with verbalizing the errors. Somewhat agree

3 The debugging form helped me with explaining the debugging progress to instructors. Neutral

4 The debugging form helped me stay aware of my debugging progress. Neutral

5 I have solved at least one bug that I was going to ask instructors about while filling out the debugging form. 73% Yes, 27% No

6 I feel more confident in approaching debugging process because I learned and used the debugging forms. Neutral

7 Do you see yourself utilizing this type of method in future computer science classes? 27% Yes, 51% Maybe, 21% No

8 Please feel free to share any comments in this section. Any positive/negative/neutral experience with debugging
form?

See Section 6

was expected to provide specific bug types as options, as opposed
to the stage of debugging. However, identifying the debugging step
and describing the bug in detail are connected yet separate tasks in
the debugging form. Details about the specific bug at hand would be
better placed in the next column, “Issue Description”. Commenting
on the “Issue Category” column, Participant 6 wrote: “The Other
category was sometimes intimidating because I didn’t even know
how to describe the error and if there were more options maybe I
would have been able to articulate my issue better”. And Participant
31 said “More options for stuff like that in the 1-6 category other
than Other might help articulate exactly what’s wrong”.

These responses provide invaluable feedback for future iterations
of the form. For example, providing options based on a taxonomy
of error types students are likely to run into on these assignments
could help students articulate their bugs a bit better.

7 FORM ANALYSIS
Implementing a method to measure one’s metacognitive awareness
is not straightforward. Jacobse and Harskamp suggested that the
development of measurement instruments be specifically shaped
to fit certain domains due to the fairly domain-specific nature of
metacognition [6]. We wanted to perform metacognitive awareness
measurement analysis on how much we think students understood
the bugs they logged on the debugging form. However, the existing
methods to accomplish this goal was inaccessible or the debugging
form was specific to our study context. Therefore, we created our
own rubric to measure students’ understanding of their bugs.

7.1 Form Analysis Rubric
The rubric has three levels where each entry has to meet specific
criteria to qualify for one of the levels. Each assignment’s level
was assigned by the average of the levels (rounded it up if not not
uniform). We chose to round up because the existence of higher
level shows that they are capable of understanding the bug at that
level. To qualify for one level, the entry has to meet the level’s
criteria on top of the previous levels’. Table 2 describes the rubric
and provides examples responses for each level. The examples are
extracted from submitted debugging forms. To avoid bias based on

performance, project grades were not considered before submitted
forms were assigned levels according to the rubric.

7.2 Results
Figure 1 presents frequencies of metacognitive awareness scores
for each project, measured using the rubric described earlier. The
total number of the forms for each project is different because 10
students did not submit the debugging form for every project.

Project 2 Project 3 Project 4
0

10

20

9

4

1211

15
13

11 12

5

Le
ve
lC

ou
nt

Level 1
Level 2
Level 3

Figure 1: Distribution of form level placements for students
on the three projects.

We did not necessarily expect students’ level placement over
time would improve because we did not provide a feedback on
their debugging forms. We hypothesize that if students were given
feedback on each debugging form, their level placement might
have increased over time. However, we did expect that the level
placement over time to stay at least consistent. Surprisingly, we
observed that the students’ understanding of the bugs decreased
from project 3 to project 4 based on our rubric.We hypothesized that
this trend might be correlated with project difficulty and decided
to look at average grade of each project.

The average grade for project 2, 3, and 4 were 92.39%, 98.26%,
and 92.71% respectively (see Figure 2). Visually, average grades and
students’ level placements appeared to increase from Project 2 to 3
but decreased from 3 to 4, suggesting a correlation between project

SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada Lee et al.

Table 2: Rubric for classifying form responses and (real) example responses for each level.

Level Description Example

1 Mentions basic information about the error. “Wrong output”
2 Describe the faulty behavior of program at high level

language.
“For the concordance functions, it would to print out the entire
line over and over instead of each word.”

3 Describe the faulty behavior of program at low level
language and/or shows evidence of previous debugging
stage hypothesis.

“In postfix_eval: Getting ValueError: could not convert string to
float even though I have a try/except to handle this case. It also
says During handling of the above exception, another exception
occurred, followed by a KeyError: ‘blah’.”

2 3 4
90

92

94

96

98

100

Project

G
ra
de

Pe
rc
en
ta
ge

(%
)

Average Grade

Figure 2: Average grade on each project

Figure 3: Students who scored above the the median were
more likely to display Level 2 or 3 on their debugging forms.

performance and students’ understanding of their debugging pro-
cess. We tested this hypothesis with a Kruskal-Wallis analysis of
variance, with awareness level as a categorical independent vari-
able, and project score as a numerical dependent variable. However,
we were unable to confirm a relationship between the two variables
(𝐻 = 2.56, 𝑝 = 0.28).

That said, project distributions were highly skewed, with a me-
dian score of 98%. Considering cognitive awareness scores for
project performances below and above this threshold (50% each), it
is visually apparent in Figure 3 that students who scored higher on
metacognitive awareness also scored higher on the project.

This is worth exploring further, perhaps with an improved rubric
to measure cognitive awareness (discussed in Section 8).

8 DISCUSSION
It appeared that a higher level of cognitive awareness on the debug-
ging forms was accompanied by better performance on the projects.
Specifically, grades on Project 3 were better than those on Projects
2 and 4. Accordingly, form submissions on Project 3 showed higher
cognitive awareness scores than those on Project 2 and 4. We can-
not say anything about the direction of causality project scores
and cognitive awareness placements, but prior research suggests
that students with higher cognitive awareness tend to be better at
solving programming problems.

Based on the exit surveys (Table 1), students found that filling
out the form helped them to verbalize errors, and may have helped
them surmount problems that would otherwise have driven them
to seek help in office hours. While our goal is not to discourage
help-seeking, this added self-sufficiency is a positive.

Students were asked to report on “major” bugs in their projects,
and were given the freedom to define “major” bugs. While this gave
them fewer restrictions on what bugs they did or did not log, a
narrower definition (e.g., based on types of errors, test cases failed,
or time taken to fix them) would have standardized the kinds of
bugs that students reported. However, the focus of this study was
on students’ awareness of their debugging processes, and not on the
bugs themselves. We valued fewer restrictions over standardization.

We see a number of possible directions for future work. First, we
plan to address some confusions that arose regarding the debugging
form (see Section 6.1) by re-phrasing portions of the form headings.
Additionally, we believe confusion regarding the instructions how
to fill out the debugging form could be solved with a explicit lecture
explaining the debugging stages, similar to the way Loksa et al.
gave explicit instruction on programming problem solving. While
we made the resources available for students to review, our brief
introduction to the debugging form and debugging stages might
not have been sufficient.

Next, students were asked to bring their forms with them to
instructor office hours. It would be interesting to examine the re-
lationship between aspects of the help session and the cognitive
awareness demonstrated on the form. For example, how articulate
were students in formulating their help requests after having used
the form? Students self-reported Neutral to this question in the
survey (Table 1), but the course staff’s perspective would provide
an interesting point of comparison.

Our rubric described in Section 7.1 is a potential source of threat
to construct validity, particularly given the confusions described in

Exploring the Impact of Cognitive Awareness Scaffolding for Debugging in an Introductory Computer Science Class SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada

Section 6.1. In the future, we plan to give students explicit feedback
based on their debugging form submissions, and to explore the im-
pact of this feedback on their debugging process and effectiveness.

REFERENCES
[1] Marzieh Ahmadzadeh, Dave Elliman, and Colin Higgins. 2005. An Analysis of

Patterns of Debugging among Novice Computer Science Students. SIGCSE Bull.
37, 3 (jun 2005), 84–88. https://doi.org/10.1145/1151954.1067472

[2] Augie Doebling and Ayaan M. Kazerouni. 2021. Patterns of Academic Help-
Seeking in Undergraduate Computing Students. In 21st Koli Calling International
Conference on Computing Education Research (Joensuu, Finland) (Koli Calling ’21).
Association for Computing Machinery, New York, NY, USA, Article 13, 10 pages.
https://doi.org/10.1145/3488042.3488052

[3] J H Flavell. 1976. Metacognitive Aspects of Problem Solving. In The Nature of
Intelligence, L B Resnick (Ed.). Earlbaum, Hillsdale, NJ, 231–235.

[4] L. Gugerty and G. Olson. 1986. Debugging by Skilled and Novice Programmers.
SIGCHI Bull. 17, 4 (apr 1986), 171–174. https://doi.org/10.1145/22339.22367

[5] Andrew Hunt. 1990. The Pragmatic Programmer: From Journeyman to Master.
Addison-Wesley.

[6] Annemieke E. Jacobse and Egbert G. Harskamp. 2012. Towards efficient mea-
surement of metacognition in mathematical problem solving. Metacognition and
Learning 7, 2 (Aug 2012), 133–149. https://doi.org/10.1007/s11409-012-9088-x

[7] Esther Kapa. 2001. A Metacognitive Support during the Process of Problem
Solving in a Computerized Environment. Educational Studies in Mathematics 47,
3 (Sep 2001), 317–336. https://doi.org/10.1023/A:1015124013119

[8] Irvin R Katz and John R Anderson. 1987. Debugging: An analysis of
bug-location strategies. Human-Computer Interaction 3, 4 (1987), 351–
399. https://www.researchgate.net/publication/234780775_Debugging_An_
Analysis_of_Bug-Location_Strategies

[9] Thomas D. LaToza, Maryam Arab, Dastyni Loksa, and Amy J. Ko. 2020. Explicit
programming strategies. Empirical Software Engineering 25, 4 (July 2020), 2416–
2449. https://doi.org/10.1007/s10664-020-09810-1

[10] Lucas Layman, Madeline Diep, Meiyappan Nagappan, Janice Singer, Robert
Deline, and Gina Venolia. 2013. Debugging Revisited: Toward Understanding the
Debugging Needs of Contemporary Software Developers. In 2013 ACM / IEEE
International Symposium on Empirical Software Engineering and Measurement.
383–392. https://doi.org/10.1109/ESEM.2013.43

[11] Dastyni Loksa, Amy J. Ko, Will Jernigan, Alannah Oleson, Christopher J. Mendez,
and Margaret M. Burnett. 2016. Programming, Problem Solving, and Self-
Awareness: Effects of Explicit Guidance. In Proceedings of the 2016 CHI Con-
ference on Human Factors in Computing Systems (San Jose, California, USA) (CHI
’16). Association for Computing Machinery, New York, NY, USA, 1449–1461.
https://doi.org/10.1145/2858036.2858252

[12] Rifat Sabbir Mansur, Ayaan M. Kazerouni, Stephen H. Edwards, and Clifford A.
Shaffer. 2020. Exploring the Bug Investigation Techniques of Intermediate Student
Programmers. In Koli Calling ’20: Proceedings of the 20th Koli Calling International
Conference on Computing Education Research (Koli, Finland) (Koli Calling ’20).
Association for Computing Machinery, New York, NY, USA, Article 2, 10 pages.
https://doi.org/10.1145/3428029.3428040

[13] Renée Mccauley, Sue Fitzgerald, Gary Lewandowski, Laurie Murphy, Beth Simon,
Lynda Thomas, and Carol Zander. 2008. Debugging: A review of the literature
from an educational perspective. Computer Science Education 18 (06 2008). https:
//doi.org/10.1080/08993400802114581

[14] Laurie Murphy, Gary Lewandowski, Renée McCauley, Beth Simon, Lynda
Thomas, and Carol Zander. 2008. Debugging: The Good, the Bad, and the
Quirky – a Qualitative Analysis of Novices’ Strategies. 40, 1 (mar 2008), 163–167.
https://doi.org/10.1145/1352322.1352191

[15] Murthi Nanja and Curtis R Cook. 1987. An analysis of the on-line debugging
process. In Empirical studies of programmers: Second workshop. Norwood, NJ:
Ablex, 172–184. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.935.
3262&rep=rep1&type=pdf

[16] Roy D Pea, Elliot Soloway, and Jim C Spohrer. 1987. The buggy path to the devel-
opment of programming expertise. Focus on Learning Problems in Mathematics 9
(1987). https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.487.879&rep=
rep1&type=pdf

[17] James Prather, Brett A. Becker, Michelle Craig, Paul Denny, Dastyni Loksa, and
Lauren Margulieux. 2020. What DoWe ThinkWe ThinkWe Are Doing? Metacog-
nition and Self-Regulation in Programming. In Proceedings of the 2020 ACM
Conference on International Computing Education Research (Virtual Event, New
Zealand) (ICER ’20). Association for Computing Machinery, New York, NY, USA,
2–13. https://doi.org/10.1145/3372782.3406263

[18] James Prather, Raymond Pettit, Brett A. Becker, Paul Denny, Dastyni Loksa, Alani
Peters, Zachary Albrecht, and Krista Masci. 2019. First Things First: Providing
Metacognitive Scaffolding for Interpreting Problem Prompts. In Proceedings of
the 50th ACM Technical Symposium on Computer Science Education (Minneapolis,
MN, USA) (SIGCSE ’19). Association for Computing Machinery, New York, NY,

USA, 531–537. https://doi.org/10.1145/3287324.3287374
[19] Yanyan Ren, Shriram Krishnamurthi, and Kathi Fisler. 2019. What Help Do

Students Seek in TA Office Hours?. In Proceedings of the 2019 ACM Conference
on International Computing Education Research (Toronto ON, Canada) (ICER
’19). Association for Computing Machinery, New York, NY, USA, 41–49. https:
//doi.org/10.1145/3291279.3339418

[20] Iris Vessey. 1986. Expertise in Debugging Computer Programs: An Analysis of the
Content of Verbal Protocols. IEEE Transactions on Systems, Man, and Cybernetics
16, 5 (1986), 621–637. https://doi.org/10.1109/TSMC.1986.289308

[21] John Wrenn and Shriram Krishnamurthi. 2019. Executable Examples for Pro-
gramming Problem Comprehension. In Proceedings of the 2019 ACM Confer-
ence on International Computing Education Research (Toronto ON, Canada)
(ICER ’19). Association for Computing Machinery, New York, NY, USA, 131–139.
https://doi.org/10.1145/3291279.3339416

https://doi.org/10.1145/1151954.1067472
https://doi.org/10.1145/3488042.3488052
https://doi.org/10.1145/22339.22367
https://doi.org/10.1007/s11409-012-9088-x
https://doi.org/10.1023/A:1015124013119
https://www.researchgate.net/publication/234780775_Debugging_An_Analysis_of_Bug-Location_Strategies
https://www.researchgate.net/publication/234780775_Debugging_An_Analysis_of_Bug-Location_Strategies
https://doi.org/10.1007/s10664-020-09810-1
https://doi.org/10.1109/ESEM.2013.43
https://doi.org/10.1145/2858036.2858252
https://doi.org/10.1145/3428029.3428040
https://doi.org/10.1080/08993400802114581
https://doi.org/10.1080/08993400802114581
https://doi.org/10.1145/1352322.1352191
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.935.3262&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.935.3262&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.487.879&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.487.879&rep=rep1&type=pdf
https://doi.org/10.1145/3372782.3406263
https://doi.org/10.1145/3287324.3287374
https://doi.org/10.1145/3291279.3339418
https://doi.org/10.1145/3291279.3339418
https://doi.org/10.1109/TSMC.1986.289308
https://doi.org/10.1145/3291279.3339416

	Abstract
	1 Introduction
	2 Background
	3 Study Context
	4 Debugging Form
	5 Methodology
	5.1 Form Instructions
	5.2 Exit Survey

	6 Survey Analysis
	6.1 Survey Results

	7 Form Analysis
	7.1 Form Analysis Rubric
	7.2 Results

	8 Discussion
	References

