The Journal of Systems & Software 175 (2021) 110905

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Fast and accurate incremental feedback for students’ software tests
using selective mutation analysis™

Check for
updates

Ayaan M. Kazerouni ®*, James C. Davis, Arinjoy Basak ¢, Clifford A. Shaffer®,
Francisco Servant ¢, Stephen H. Edwards ©*

@ Department of Computer Science and Software Engineering, California Polytechnic State University, United States of America
b Department of Electrical and Computer Engineering, Purdue University, United States of America
¢ Department of Computer Science, Virginia Tech, United States of America

ARTICLE INFO ABSTRACT

Article history:

Received 29 June 2020

Received in revised form 23 November 2020
Accepted 4 January 2021

Available online 8 January 2021

As incorporating software testing into programming assignments becomes routine, educators have
begun to assess not only the correctness of students’ software, but also the adequacy of their tests.
In practice, educators rely on code coverage measures, though its shortcomings are widely known.
Mutation analysis is a stronger measure of test adequacy, but it is too costly to be applied beyond
the small programs developed in introductory programming courses. We demonstrate how to adapt
mutation analysis to provide rapid automated feedback on software tests for complex projects in large
programming courses. We study a dataset of 1389 student software projects ranging from trivial to
complex. We begin by showing that although the state-of-the-art in mutation analysis is practical for
providing rapid feedback on projects in introductory courses, it is prohibitively expensive for the more
complex projects in subsequent courses. To reduce this cost, we use a statistical procedure to select
a subset of mutation operators that maintains accuracy while minimizing cost. We show that with
only 2 operators, costs can be reduced by a factor of 2-3 with negligible loss in accuracy. Finally, we
evaluate our approach on open-source software and report that our findings may generalize beyond

our educational context.
© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords:

Software testing

Mutation analysis

Software engineering education
Automated assessment tools

1. Introduction should be amenable to incremental feedback in order to guide stu-

dents throughout the development cycle. Third, it should be fast

Software testing is the primary approach for evaluating the
correctness of computer software in practice. It is thus critical
that software engineering teams follow strong software testing
practices. Unfortunately, many software engineers have inade-
quate training in testing (Lethbridge, 2000; Carver and Kraft,
2011; Radermacher and Walia, 2013). To address this shortcom-
ing, educators have begun to incorporate software testing into the
software engineering curriculum (Jones, 2000; Spacco and Pugh,
2006; Aniche et al., 2019), including introductory programming
courses (Edwards, 2004). These educators provide students with
feedback not only about their software, but also about their test
suites.

To be effective, feedback on student test suites should meet
three goals. First, it should provide a reliable test adequacy crite-
rion, so that students are assessed in a meaningful way. Second, it

* Editor: [W. ERIC WONG].
* Corresponding authors.
E-mail addresses: ayaank@calpoly.edu (A.M. Kazerouni),
davisjam@purdue.edu (J.C. Davis), arinjoyb@vt.edu (A. Basak), shaffer@vt.edu
(C.A. Shaffer), fservant@vt.edu (F. Servant), edwards@cs.vt.edu (S.H. Edwards).

https://doi.org/10.1016/j.jss.2021.110905

to compute to support student learning. Speediness also ensures
that an educational institution’s centralized Automated Assess-
ment Tool (AAT) (Pettit and Prather, 2017) is not overloaded.

Many approaches have been proposed for evaluating student
test suites (Goldwasser, 2002; Edwards, 2004; Aaltonen et al.,
2010). Code coverage measures can provide incremental feedback
and are quickly computed, but they set a low bar for adequacy: a
test may cover code without ensuring its correctness (Myers et al.,
2011; Edwards et al., 2009; Aaltonen et al., 2010; Inozemtseva
and Holmes, 2014). The all-pairs approach involves running every
student’s tests against every other student’s code (Goldwasser,
2002), improving test adequacy but requiring relatively com-
plete implementations (non-incremental). These approaches do
not currently meet our goals (see Section 2.2).

Mutation analysis, proposed by DeMillo et al. (1978), is a
promising alternative feedback approach. Mutation analysis is a
fault-based test assessment technique in which small changes
(mutations) are made to the target program, creating incorrect
variants known as mutants. The different kinds of mutations that
can be applied are called mutation operators. The adequacy of the

0164-1212/© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).

https://doi.org/10.1016/j.jss.2021.110905
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2021.110905&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:ayaank@calpoly.edu
mailto:davisjam@purdue.edu
mailto:arinjoyb@vt.edu
mailto:shaffer@vt.edu
mailto:fservant@vt.edu
mailto:edwards@cs.vt.edu
https://doi.org/10.1016/j.jss.2021.110905
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

AM. Kazerouni, J.C. Davis, A. Basak et al.

test suite is measured as the percentage of mutants caught by the
test suite.

Mutation analysis mitigates the limitations of code coverage
approaches and all-pairs approaches. Unlike code coverage, mu-
tation analysis is a reliable adequacy criterion for student-written
software tests (Aaltonen et al., 2010; Shams, 2015). Unlike all-
pairs approaches, mutation analysis can be used to provide incre-
mental feedback. However, it is well-known that mutation anal-
ysis is a computationally expensive approach in general (Jia and
Harman, 2011). Previous studies have found mutation analysis
to be a reliable adequacy criterion for student-written software
tests, but they have not studied whether mutation analysis can
be performed cheaply enough to provide timely feedback in an
AAT.

Our goal in this paper is to evaluate the cost of running
mutation analysis on undergraduate programming projects and
to reduce it to the point where it is feasible to deploy in an
AAT to provide students with rapid incremental feedback about
the quality of their tests. We evaluate the effectiveness of our
approach as we vary the complexity of the student projects un-
der consideration, determining whether a scheme for projects in
introductory courses (with relatively small programs) will work
for those in subsequent courses (with larger and more complex
programs). We conduct three studies:

e Motivational. We investigate the cost and effectiveness of
existing approaches to mutation analysis when applied to
students’ software projects (Section 6). We consider the
state of the art in mutation analysis: comprehensive mu-
tation (all available mutants) and two selective mutation
strategies: sufficient and deletion mutation.

e Core. We propose a novel approach to mutation analy-
sis that is appropriate for use in a rapid response auto-
mated feedback context (Section 7). We do this by selecting
a further-reduced subset of mutation operators through a
statistical procedure.

e Validation. We conduct an additional study to validate our
findings by running similar analysis, but using a separate
corpus of real-world software (Section 8). We evaluate the
effectiveness along with two measures of cost — the number
of mutants, and the proportion of equivalent mutants - for
our chosen subsets of operators.

Summary of findings. Our proposed approach offers superior
cost-effectiveness trade-offs compared to the state of the art. But
in our context, we found that there exists a set of two mutation
operators sufficient to predict the mutation coverage achieved
under the full set of mutation operators with R?> of up to 0.94,
depending on the size of the program under test. In other words,
in terms of reliability, our techniques perform nearly as effectively
as comprehensive mutation analysis. And in terms of computa-
tional cost, we halve the cost of the state of the art (mutation
by deletion), reducing the total cost of test adequacy assessment
from roughly 630 mutants per thousand lines of code (KSLoC) for
deletion mutation to between 230 and 330 mutants per KSLoC,
depending on the program under test. In our validation study, we
found that these findings may generalize to real-world projects
as well, suggesting potential benefits for practitioners as well as
educators.

Our results indicate that using mutation operator subsets is an
effective approximation of much more costly mutation analysis
strategies for student code, and reduces the run-time impact to a
point where it is feasible to apply automatically as students check
their work during solution development. This will allow educa-
tors to provide interactive feedback within a reasonable response
time, allowing students to iterate more quickly on submission

The Journal of Systems & Software 175 (2021) 110905

cycles, while being held to a higher standard of test adequacy.
Since mutation analysis is a more reliable adequacy criterion than
commonly-used code coverage measures, this will help students
to produce stronger test suites (and therefore, we hope, more
reliable software). This paper contributes to software engineering
education research and practice by showing how mutation oper-
ators can be applied in a cost-effective way to better assess the
quality of student-written tests. Our work is thus an important
step toward improving the pedagogy of software testing.

This paper’s outline is as follows. We describe prior work
related to evaluating test quality and mutation analysis (Sec-
tion 2); define goals for speedy mutation-based feedback (Sec-
tion 3); describe our research questions (Section 4) and study
context (Section 5); and describe the methods and results for
each research question (Sections 6-8). We close with a discussion
of our results (Section 9), an assessment of threats to validity
(Section 10), and a summary of our conclusions (Section 11).

2. Background and related work

We first introduce the desirable properties of test assessment
criteria, then review prior work on the evaluation of software
test suites, and finally summarize the state of the art in mutation
analysis in the educational context.

2.1. Desirable properties for student test assessment

Our work is conducted in the context of computing education,
where a metric for student test assessment should meet three
goals: it should enforce a strong test adequacy criterion, it should
permit incremental feedback, and it should return a fast response.

The most desirable feature for such a metric is that it impose
a strong test adequacy criterion. A test adequacy criterion is
a predicate that defines “what properties of a program must be
exercised to constitute a ‘thorough’ test, i.e., one whose successful
execution implies no errors in a tested program” (Goodenough
and Gerhart, 1975). Note that the focus of such a criterion is not
the program, but rather the tests. The stronger the test adequacy
criterion, the higher the standard to which a test suite is held.
Criteria of test adequacy vary in their strength. For example, suc-
cessful compilation is a weak test adequacy criterion, statement-
based code coverage is a stronger criterion, and condition-based
coverage is stronger still. The stronger the test adequacy cri-
terion, the better the alignment between a test suite’s actual
strength and its strength as measured by the criterion. So, satisfy-
ing a weak test adequacy criterion does not guarantee thorough
testing. Spacco et al. (2006) and Shams (2015) report that stu-
dents’ high code coverage scores were not correlated with bug-
free software—this has also been observed in non-educational
settings (Inozemtseva and Holmes, 2014).

Incremental feedback has been found to improve student
learning outcomes (Black and Wiliam, 1998; Edwards, 2004), and
is therefore a desirable quality for an assessment metric. Rather
than deferring feedback until their final submissions, incremental
feedback permits students to gauge their progress and identify
their errors along the way. It is thus becoming standard practice
in computer science education (Pettit and Prather, 2017).

Providing a fast response is valuable for pedagogical and
practical reasons. Pedagogically, fast feedback (seconds, not min-
utes) has been found to improve student learning (Azevedo and
Bernard, 1995; der Kleij et al., 2015). Performance is also of
practical concern in an educational context, because student sub-
missions are typically assessed on a single centralized server
shared among all CS courses at an institution. These servers
are known as Automated Assessment Tools (AATs), and include

AM. Kazerouni, J.C. Davis, A. Basak et al.

The Journal of Systems & Software 175 (2021) 110905

Table 1
Test evaluation techniques commonly used in CS education and their strengths and weaknesses.
Technique Ref. Strong adequacy Supports incremental Fast
criterion? feedback? response?
Spacco and Pugh (2006)
Code coverage Edwards (2004) v v
Goldwasser (2002)
All-pairs execution Edwards et al. (2012) X X
P Wrenn et al. (2018)
Buffardi et al. (2019)
Mutation analysis Aaltonen et al. (2010) v x?

Shams and Edwards (2013)

4Addressed in this paper.

Web-CAT (Edwards, 2004), Athene (Pettit et al., 2015), and oth-
ers (Jackson and Usher, 1997; Spacco and Pugh, 2006; Wang et al.,
2011; Papancea et al.,, 2013). AATs are centralized to ensure a
trusted computing base, making them a reliable source of student
scores. At institutions that offer incremental feedback, each stu-
dent may make many dozens of submissions per assignment to
the institution’s AAT, with bursty traffic near due dates (Edwards
et al,, 2009). Lower computational cost for the feedback reduces
the risk that these AATs will be overloaded.

2.2. Existing measures of student test quality

Educators have explored three principal measures of student
test quality: code coverage, all-pairs comparisons, and mutation
analysis. None of these measures currently meets our goals for
a student test assessment metric (Table 1).

Code coverage is fast to compute and supports incremental
feedback. However, it is not a strong test adequacy criterion. It
is satisfied simply when tests “cover” the code, whether or not
they confirm that the code works correctly (Aaltonen et al., 2010;
Edwards and Shams, 2014; Inozemtseva and Holmes, 2014). That
is, even strong code coverage measures (like condition coverage
or MC/DC) are insensitive to the assertions that appear in soft-
ware tests. These measures are an effective tool for professional
engineers (Ivankovi¢ et al., 2019), but like any tool they can be
used incorrectly. For example, students often use “pathological”
tests to achieve high coverage while only making assertions about
(i.e., properly testing) small aspects of the desired functional-
ity (Shams, 2015). Used this way, coverage measures do not give
a student actionable feedback.

The all-pairs approach—in which a student’s tests are run
against every other student’s code (Goldwasser, 2002)—is a re-
liable test adequacy criterion (Edwards and Shams, 2014), but it
can be slow to compute (Shams, 2015) and is not amenable to
incremental feedback. All-pairs testing requires several completed,
compatible versions of each piece of a project. Compatibility is en-
sured when projects are scaffolded (e.g., lower-level courses), but
in most upper-level courses students are given only the system-
level 1/O requirements and take responsibility for designing their
own components and internal APIs. Since students’ tests and so-
lutions are typically not completed until the deadline (Kazerouni
et al.,, 2017, 2019), there would be little opportunity for feedback
during the development process.

Mutation analysis (DeMillo et al., 1978) is a provably strong
test adequacy criterion (Wong and Mathur, 1995; Offutt and Voas,
1996), and like code coverage it supports incremental feedback
with relatively low human cost. However, comprehensive mu-
tation analysis is prohibitively expensive computationally. But
while the shortcomings of code coverage and the all-pairs ap-
proach appear to be fundamental, the cost of mutation analysis
may be reduced. Next, we discuss research to this end.

2.3. Reducing the cost of mutation analysis

The idea of mutation analysis is to inject micro-faults into the
target program, and then determine whether the test suite can
identify the change in behavior (DeMillo et al., 1978). Faults are
injected using mutation operators to create (presumably) incor-
rect variants called mutants. Mutation frameworks use mutation
operators to target different aspects of the program when it is
represented as an AST. For example, frameworks provide mu-
tation operators for arithmetic expressions, return values, and
condition predicates, among others (King and Offutt, 1991). The
resulting mutants have been found to be valid substitutes for
“real” faults (Andrews et al., 2005; Just et al., 2014). After creating
mutants, a test suite’s adequacy can be measured in terms of its
mutation coverage by calculating the proportion of mutants that
it detects.

Mutation analysis is costly. Applying a full set of mutation op-
erators to a non-trivial program can yield thousands or millions of
mutants, and running the test suite for each mutant is computa-
tionally intensive. This process can also exact considerable human
cost, since a software tester must design tests that are able to
detect all or most of the mutants that are produced. Exacerbating
this situation is the possibility of producing an equivalent mutant,
i.e., a mutant that is functionally identical to the original program
and thus will not affect the test suite’s results. Equivalent mutants
represent wasted work; these “false positives” do not help assess
or improve a test suite, and must in general be filtered out
manually (Budd and Angluin, 1982).

Considerable effort has been devoted to reducing the cost
of mutation analysis. Jia and Harman (2011) categorized these
efforts into: (1) “Do fewer”, reducing the number of generated
mutants, and (2) “Do faster”, reducing the execution cost in other
ways (e.g., avoiding 1/0). We are concerned with mutant re-
duction techniques, specifically the technique of selective mu-
tation (Mathur, 1991), which reduces the number of mutation
operators to trade completeness for lower costs.

Among selective mutation approaches, two are prominent: the
sufficient set (Offutt et al., 1996) and the deletion set (Untch, 2009).
The sufficient set was introduced by Offutt et al. (1996), who
showed that a subset of the Mothra mutation operators (King and
Offutt, 1991) would yield results comparable to comprehensive
mutation, bringing with it considerable cost savings. While state-
ment deletion was available in the first mutation systems (King
and Offutt, 1991), using it as a sole mode of mutation was first
proposed by Untch (2009). Delamaro et al. (2014) expanded this
idea to include operators that delete different aspects of the target
program (e.g., statements, conditions, and variables). Subsequent
evaluations of the deletion set have been promising, showing
that the deletion set yields substantially fewer mutants than the
sufficient set with a minor loss in the accuracy of its test ade-
quacy compared to comprehensive mutation (Deng et al., 2013;
Delamaro et al.,, 2014). Mutation by deletion is a promising path
toward practical and scalable mutation testing. However, neither

AM. Kazerouni, J.C. Davis, A. Basak et al.

the sufficient set nor the deletion set have been evaluated in an
educational context for large classes with complex projects, and
we present data in Section 6.1 to show that neither is fast enough
for our purposes.

2.4. Mutation analysis in education

In spite of its virtues, mutation analysis has seen little use or
evaluation in the context of student assessment and feedback. Its
high computational cost is a critical limiting factor for automated
assessment, since it could delay feedback and thus degrade learn-
ing outcomes (Azevedo and Bernard, 1995; der Kleij et al., 2015).
This cost hinders research into the potential pedagogical benefits
of mutation analysis (e.g., its utility as a form of feedback, not just
assessment). This paper enables such work by allowing for fast
and accurate incremental feedback using mutation analysis.

There have been few efforts to apply mutation analysis in an
educational setting. Aaltonen et al. (2010) reported that muta-
tion analysis revealed deficiencies in students’ testing that were
not revealed by code coverage. However, their work only con-
sidered using mutation analysis non-incrementally (for grading
purposes), and did not consider its deployment costs. These costs
are of significant concern if an AAT provides students with feed-
back as they work. Shams and Edwards (2013) explored the use
of mutation analysis in novice programming courses, and also
compared the cost-effectiveness of various selective mutation
approaches with other measures of test quality (Edwards and
Shams, 2014). They found that statement deletion was the most
cost-effective mutation-based test adequacy criterion, which par-
tially influenced our experimental design. However, the cost of
mutation by deletion has not been evaluated for the common
educational context of automated assessment systems, and its
accuracy as a test adequacy criterion has only been evaluated on
software produced by novice CS students.

We build on these efforts in two ways. First, we examine the
cost-effectiveness of various mutation approaches in the “pro-
duction” educational context of an AAT, with its accompanying
performance constraints. Second, we apply our analysis to a large
corpus of student projects with a substantially wider range of
size and complexity than has previously been considered. In
this context, we find that existing techniques are inadequate.
However, through statistical selection we can reduce the cost of
mutation analysis by 50% compared to the deletion subset (and
by 90% compared to comprehensive mutation), with only a minor
degradation of the test adequacy criterion.

2.5. Mutation analysis tools for Java

Our institution uses Java as the primary programming lan-
guage, so we sketch the landscape of Java mutation testing tools.
Prominent among these are: wJava (Ma et al., 2005), Javalanche
(Schuler and Zeller, 2009), MAJOR (Just et al., 2011), and PIT (Coles
et al, 2016). Abstractly, they all follow the same two-stage
process: (1) Generate mutants, and (2) Run test suites to see if
the mutants are detected. Some of these tools target a particular
language version (e.g., if they mutate source-level constructs).

Due to language version constraints, pJava and Javalanche are
unsuitable in our context. pJava and Javalanche target Java 6,
which is no longer support by either Open]JDK or Oracle. Our
students use Java 8 or later in their projects. We attempted to use
pJava on these projects, but it exhibited many errors. Javalanche
has also exhibited issues on similar code-bases (Delahaye and
du Bousquet, 2013; Gopinath et al., 2017). Upgrading pJava and
Javalanche was out of scope for our work. Other, less prominent
tools for Java mutation testing have also been considered by
researchers (Delahaye and du Bousquet, 2013; Gopinath et al.,

The Journal of Systems & Software 175 (2021) 110905

2017), and found to be unsuitable for larger or newer projects
for various reasons. We thus focus our discussion on the newer
mutation testing tools, PIT and MAJOR.

We compare PIT and MAJOR along two axes: effectiveness
and speed. Effectiveness is determined by a tool’s fault-revelation
capability, dictated by which mutants it generates. Studies have
found PIT more effective than MAJOR (Gopinath et al.,, 2017;
Kintis et al., 2018).

Speed is determined by algorithmic and implementation de-
cisions. There has been no empirical speed comparison between
PIT and MAJOR. However, based on our study of their designs,
we do not expect a substantial speed difference. To generate
mutants, both tools manipulate the program representation in-
memory within a single JVM instance. To detect mutants, both
tools filter tests using line coverage and prioritize them using
testing execution time. As a result, each tool detects a mutant
using the fastest covering unit test.

3. Goals and constraints

Here we contextualize our study in modern AATs, and define
what constitutes fast-enough test suite feedback in such an AAT.
AATs tend to handle substantial throughput, particularly when
they provide students with intermediate feedback on incremental
submissions. It is imperative that any mutation analysis strategy
used in an AAT supports a reasonable response time, both so that
students can make appropriate use of intermediate feedback, and
so as not to degrade the AAT during times of heavy load.

In order to provide real-world context for this study, we
describe our AAT’s hardware configuration, throughput, and the
processing for a typical submission. At our institution, we use the
AAT Web-CAT (Edwards, 2004) served using a machine running
CentOS 7 with two 16-core 2.60 GHz Intel Xeon Gold 6142 CPUs
and 256 GB RAM. The persistent storage was two 600 GB, 10,000
RPM Hitachi HDDs. Our experiments are memory and compute
bound. Because PIT operates only on byte-code in memory, disk
accesses only take place to access the compiled bytecode be-
fore analysis and to write out results after analysis. All analyses
in this paper were run on a separate machine with identical
specifications. Day-to-day usage of the AAT did not affect our
experiments.

Our institution’s AAT server (serving the AAT Web-CAT Ed-
wards (2004)) is shared by many courses at our institution, and is
also used by several other institutions. Our AAT has a steady-state
load of hundreds of daily student users, peaking around 2000
daily users. These users drive a steady state throughput of 11
submissions per minute, or about 1 submission every 5 s. During
submission bursts near assignment deadlines, our AAT receives
39 submissions per minute, or a submission every 1.5 s. The AAT
requires a median of 13 s to generate full submission feedback for
a submission, including compilation, static analysis, instructor-
written reference tests, and test adequacy assessment—currently
bytecode-level statement and condition coverage.

In light of this load, our AAT handles one submission per
core, leaving some cores idle for the user interface and database
functionality for interactive services. Though mutation analysis is
an easily parallelizable problem, parallel processing for a single
submission is unattractive: using up cores to process a single
submission would only transfer the slow-down from time spent
processing to time spent waiting to be processed.

While it is desirable to minimize any increase in processing
time, using a more reliable test adequacy criterion makes some
increase inevitable. In contrast to code coverage, which requires
executing student-written software tests only once, mutation-
based feedback involves running software tests once per mutant,
substantially increasing the processing time for each submission.

AM. Kazerouni, J.C. Davis, A. Basak et al.

Our experience with AAT usage and our understanding of student
interactions with feedback suggest that increasing the delay in
feedback response by minutes would be unacceptable to users.
Such a delay would also substantially reduce throughput, to a de-
gree prohibitive to address through additional hardware invest-
ments. However, we believe that adding a significantly smaller
amount of time—perhaps 30 seconds or less—would approach the
realm of feasibility. Additional measures (increased parallelism,
faster hardware, more sophisticated cloud deployment, etc.) may
still be needed to reach desirable peak throughput. In short, we
want mutation-based test adequacy feedback to add fewer than
30 seconds to the feedback generation time for a single student
submission, where smaller costs are definitely more desirable.

This goal of “fewer than 30 seconds” is specific to our in-
stitutional context—our hardware, software, and students. How-
ever, institutional needs vary. We explore a continuum of selec-
tive mutation approaches that could be tailored to institutional
needs, budgets, and other factors. For example, an institution with
slower hardware might opt for computationally cheaper but less
reliable mutation approaches. And for institutions with the bud-
get for faster hardware or managed cloud clusters, more reliable
and costly approaches would be within reach. Our approach can
help institutions make an informed choice appropriate to their
context.

4. Research questions

We now describe the three empirical studies that we con-
ducted. They were designed to provide a mechanism to evaluate
student-written test suites using mutation analysis that is feasi-
ble for use in an AAT while remaining a reliable test adequacy
criterion. For each study, we identify the research questions that
it was meant to address.

4.1. Motivational study: Evaluating existing selective mutation ap-
proaches for use in an AAT

RQ1: How efficient is comprehensive mutation analysis at pro-
viding automated feedback on test suites? We study whether it is
actually necessary to improve the efficiency of mutation analysis
for student code. It may be that the smaller size of these projects
allows mutation analysis to offer test suite assessment within our
running time goal. We evaluate the efficiency of using mutation
analysis for automated feedback in terms of the time taken for
individual submissions to generate mutation analysis results. We
interpret results in terms of running time on the AAT server at
our institution.

RQ2: Are existing selective mutation approaches cost-effective
alternatives to comprehensive mutation? We evaluate the suffi-
cient (Offutt et al., 1996) and deletion (Delamaro et al., 2014) sets
of operators for their feasibility in providing automated incre-
mental feedback. Shams (2015) evaluated these subsets of oper-
ators on projects produced by novice programmers, and found
statement deletion to be a cost-effective approach. We believe
this result is promising, so we conduct an evaluation of the
sufficient and deletion operators set on a more general corpus of
student codebases, with submissions spanning a wider range of
size and complexity.

4.2. Core study: Proposing new mutation approaches that are viable
for use in an AAT

RQ3: Can the cost of mutation by deletion be reduced further
while maintaining effectiveness? Even though mutation by dele-
tion represents notable runtime savings over comprehensive and

The Journal of Systems & Software 175 (2021) 110905

sufficient mutation, it may be possible to reduce this cost further
without sacrificing too much in assessing test suite adequacy.

RQ4: How do the benefits of different mutation strategies vary
by project size? Our analyses were conducted on a diverse set of
programs, based on size and complexity (and therefore in terms
of the mutants produced). We investigate whether our chosen
selective mutation strategies vary in terms of cost-effectiveness
based on the size of the projects under test. This would allow
educators to make a more informed choice of operator subset to
use for test suite evaluation.

4.3. Validation study: Evaluating proposed mutation approaches us-
ing an unrelated dataset

RQ5: How do our proposed mutation strategies perform in terms
of cost-effectiveness against a separate validation dataset? Although
our analyses were conducted on a large corpus of submissions
to several assignments, it is possible that our results do not
generalize beyond our specific educational context. To address
this, we conducted an additional validation study to evaluate
the cost-effectiveness of our proposed mutation operator subsets
running on a separate dataset published by Kintis et al. (2016),
including real-world projects and projects from the mutation
testing literature.

5. Study context
5.1. Project corpuses under test

In our Motivational and Core studies, we examined Java
projects developed by students enrolled in second-year (CS2)
and third-year (CS3) Data Structures courses at a large public
university in the US. These students have taken either 1 or 2
(depending on the corpus) prerequisite Java courses, each one of
which has included JUnit testing in programming assignments.
Therefore, students have the declarative knowledge needed to
write JUnit tests (i.e., familiarity with the framework), but they
may not have the procedural knowledge required to write strong
test suites. Students were required to write unit tests for their
projects, and part of their grade depended on the quality of their
test suites (as measured by code coverage criteria).

We analyze a submission corpus that contains 1389 final sub-
missions to seven programming projects. Descriptions of the as-
signments and the corpus are presented in Table 2, and code
sizes in source lines of code are in Fig. 1. The CS2 sub-corpus
(1019 submissions) consists of submissions to four programming
assignments requiring students to implement and test a simple
data structure, e.g., a stack or a queue. Students were given two
to three weeks to work on each assignment. The CS3 sub-corpus
(370 submissions) consists of submissions to three more-complex
programming assignments. Students were given four weeks to
work on each assignment.

This corpus is noteworthy for its scale and for the range of
complexity within. This corpus contains around 2-3x the number
of projects examined in other studies on mutation analysis for ed-
ucation, along a substantially wider range of size and complexity.
Previous studies—e.g., Aaltonen et al. (2010), Shams and Edwards
(2013), Edwards and Shams (2014)—have focused on smaller,
simpler projects from introductory programming courses, com-
parable only to the first 2 projects out of our corpus of 7 (i.e., to
the first 671 submissions out of our corpus of 1389 submissions).

In our Validation study we analyzed a separate dataset of
12 methods from 6 projects, published by Kintis et al. (2016).
In addition to the codebases being tested, the dataset includes
mutants and mutation-adequate test suites. More details may be
found in Section 8.

AM. Kazerouni, J.C. Davis, A. Basak et al.

Table 2

The Journal of Systems & Software 175 (2021) 110905

Programming tasks undertaken by students in our sample, and descriptions of their implementations. # Mutants indicates the number of mutants generated under

the FULL set. Projects 1-4 are CS 2 projects, and 5-7 are CS 3 projects.

Description n LoC Cyc. Comp. # Classes # Mutants
(data structures implemented) N o i o n o % o
1 Bag 350 139.20 13.84 26.87 1.61 2.00 0.00 470.16 32.60
2 Linked stack 321 204.29 22.85 38.50 2.94 3.97 0.17 421.44 38.05
3 Array-based queue 259 448.00 39.71 104.00 7.58 6.00 0.10 1651.54 126.83
4 Linked list 89 718.02 22153 147.38 53.78 8.52 2.99 2988.94 1491.91
5 Hash table, doubly-linked list, memory pool 128 724.26 142.33 152.38 32.40 7.82 1.97 3377.76 776.02
6 Hash table, sparse matrix 133 946.56 178.69 202.17 38.77 8.06 1.97 324417 785.65
7 Bintree, skip-list 109 1263.18 303.22 261.96 73.89 15.84 3.35 6095.79 1952.25
Total 1389 650,515 136,763 8088 2,521,871
—~ I CS2 T 175 Submission Group
O 1600
3 I CS3 B SG1 (n=672)
-— n=
1200 m
3 — 3 3 3 = SG4 (n=119)
© 1000 125 = = o
o £ — © o
$ 800 " < © S
c —4 c 100 m © =
T 600 o
[} 0
2 400 ; g 75
>3
@ 200 —_— = 5
n 50
Pl P2 P3 P4 P5 P6 P7 S
Project #
] #* 25
Fig. 1. Our corpus contains submissions to assignments of increasing sizes | ‘ "I I IIII II.
(source lines of code). Whiskers indicate the 5th and 95th percentiles. 0 - —
0 500 1000 1500 2000 2500

5.2. Language and tooling

We focus on testing Java programs, since Java is widely used
in introductory and advanced programming courses at the sec-
ondary and post-secondary levels. Furthermore, the Java ecosys-
tem has good testing frameworks (e.g., JUnit) and many tools
for assessing suites using various mutation operators. We used
PIT (Coles et al, 2016), the state-of-the-art mutation testing
system for the JVM, to conduct mutation analysis.

As noted in Section 2.5, multiple studies have found PIT
to be the most effective in terms of fault-revelation capabil-
ity (Gopinath et al.,, 2017; Kintis et al., 2018). The initial release
of PIT was comparable to MAJOR and pJava (Kintis et al., 2016).
Kintis then collaborated with Coles— the PIT author —and others
to augment PIT with additional mutation operators. Kintis et al.
(2018) showed that the updated PIT was more effective at fault
revelation than pJava and MAJOR combined. Thus, the current
version of PIT (v1.5.2) offers the strongest test adequacy criterion
currently available for Java programs. We used this version in our
experiments.

Building on the past performance of deletion operators (Sec-
tion 2.2) in other languages and tools, and on PIT’s current dom-
inance of the Java mutation testing space in terms of cost and
reliability (Section 2.5), we have analyzed selective mutation
using PIT with the goal of further reducing the cost of mu-
tation testing while maintaining performance on par with the
comprehensive set of PIT operators.

5.3. Data preparation

We took several steps to prepare the corpus of students’ sub-
missions for analysis. Notice in Table 2 that the dataset is biased
toward smaller, simpler projects. Nearly half of all submissions
belong to Project 2 or 3 in the CS2 corpus. Submissions in the CS3

Source Lines of Code (SLoC)

Fig. 2. Groups of submissions based on SLoC. Dashed lines indicate group
boundaries.

corpus—which are substantially larger and more complex—would
not be well-represented by corpus-wide descriptive statistics, but
they are critical to understanding the scalability of our approach.

Therefore, we split the corpus of submissions into groups
based on program size. Splitting was performed using (Jenks,
1977) natural breaks optimization—a variation of K-Means clus-
tering (Lloyd, 1982) simplified for 1-dimensional data. The main
idea behind this splitting technique is to (1) maximize the vari-
ance between groups, and (2) minimize the variance within
groups.

We used goodness of variance fit (GVF) to determine the
appropriate number of splits. This measure is directly propor-
tional to between-group variance, and inversely proportional to
within-group variance (Jenks, 1967). Therefore, we would like to
maximize it. To determine the appropriate number of splits k,
we applied the Jenks algorithm for increasing values of k from
2 to 7 and plotted the GVF for each splitting. The diminishing
improvements in GVF indicated k = 4 to be an appropriate
number of splits for this dataset. The four submission groups
SG1-SG4 and their intervals are depicted in Fig. 2.

The makeup of the submission groups generally follows the
averages given in Table 2. We report the “major” occupants of
each submission group (i.e., course projects that account for >
10% of the submission group). SG1 consisted entirely of submis-
sions to early projects in CS2 (#1 and #2 in Table 2), more or
less evenly split. SG2 and SG3 included submissions from both
courses. SG2 contained submissions to projects #3 (73%), #4
(10%), and #5 (14%). SG3 contained submissions to projects #4
(20%), #5 (31%), and #6 (42%). Finally, SG4 was entirely from CS3,
consisting of submissions to projects #6 (23%) and #7 (72%).

AM. Kazerouni, J.C. Davis, A. Basak et al.

5.4. Measuring the cost of a selective mutation approach

In the following sections, we evaluate the cost of several
existing and proposed selective mutation analysis approaches.
We use two measures of cost: the computational cost and the
running time cost.

Computational cost was measured as the number of mutants
produced per thousand source lines of code (KSLoC). This cost
indicates the number of times a project’s test suite needs to be
run to conduct mutation analysis, giving an idea of the relative
cost of a given subset of operators.

We also measured the running time cost of existing and
proposed selective operator subsets on a server that is similar to a
real-world AAT setup (see Section 3 for hardware specifications).
This gives us an idea of the amount of time a student might wait
between making a submission to the AAT and receiving feedback
about their test suite.

We note that—since our corpus contains final submissions
as opposed to intermediate, incomplete submissions—our cost
measurements represent upper bounds on the cost of produc-
ing mutation-based incremental feedback. Final submissions are
likely to contain more code and therefore to produce more mu-
tants than intermediate submissions. However, we report that
intermediate submissions are not far removed from final submis-
sions in terms of size (and therefore in terms of the expected cost
of mutation analysis). For example, the median student’s median
submission in the CS3 course contained 96% of the total LoC that
would appear in their final submission. This number indicates
that most submissions cost approximately what our measure-
ments on final submissions imply. The large proportion may be
explained by students’ tendencies to make many submissions in
quick succession near deadlines to check if small changes help
them to pass all of the instructor-written tests.

6. Motivational study: Evaluating existing approaches

6.1. RQ1. How efficient is comprehensive mutation analysis at pro-
viding automated feedback on test suites?

In this section we evaluate the computational and running
time cost of applying a comprehensive set of mutations to our
corpus of target programs, in terms of the time taken to generate
feedback on their test suites. We interpret results in terms of our
desired performance goals.

6.1.1. Method

We define the FULL set of PIT operators to be all those used
in the comparison of PIT with uJava and MAJOR by Kintis et al.
(2018) (see Table 4 in the reference), with some minor op-
timizations. Specifically, we omitted operators that would, by
their definitions, perform the same mutations that would be
performed by other operators (duplicate mutants). For example,
the ROR operator, which was added to PIT by Kintis et al. produces
a superset of the mutants that the ConditionalsBoundary and
NegateConditionals operators produce. ROR replaces occurrences
of comparison operators with all other comparison operators.
For example, the < operator would be systematically replaced
by <=, >, >=, ==, and !=, for a total of 5 mutants. On the
other hand, the ConditionalsBoundary operator would only re-
place it with <=, and NegateConditionals would only replace it
with its negation (>=). Clearly, the mutants produced by these
operators are duplicates of those created by ROR. We likewise
omitted the PrimitiveReturns and FalseReturns operators (which
are C NonVoidMethodCalls), and the InvertNegatives operator (C
ABS). Finally, we omitted a subclass of the AOR operator (AOR1,

The Journal of Systems & Software 175 (2021) 110905

according to PIT’s nomenclature), which would duplicate mutants
produced by the Math operator.

We measured the computational cost and running time cost of
mutation analysis using the FULL set using the two measures of
cost defined in Section 5.4. Cost was measured separately for each
group of submissions.

We do not evaluate the FULL set of operators for its accuracy
at measuring a test suite’s adequacy (defect-detection capability).
Comprehensive mutation analysis has been empirically shown
to be a reliable measurement of test adequacy (Offutt, 1992;
Andrews et al., 2005; Just et al., 2014). The FULL set as described
here has been shown to be the strongest set of mutation opera-
tors available for Java programs (Kintis et al., 2018). Accordingly,
a test suite’s mutation coverage according to the FULL set of PIT
operators is the best available proxy for its adequacy.

Mutation analysis was run on 1389 submissions, and results
and running times were collected for each submission. Due to
the size of the corpus, we did not attempt to manually exclude
equivalent mutants from the corpus (see Section 10). Mutants
were treated as detected if a test case failed or timed out when
running on the mutant. Test timeouts were determined using
PIT’s default settings—a test was treated as timing out if the
execution time exceeded t *x 1.25 4+ 4000 ms, where t is the
normal execution time of the test case, measured before running
mutation analysis.

The percentage of timed-out mutants was not uniform across
submission groups. Submissions in SG3 had a higher percentage
of mutants that timed out (2.18%), relative to the other groups
(0.24% in SG1, 0.91% in SG2, and 1.37% in SG4). The result is that
running times for submissions SG3 were higher than one might
expect given the number of mutants they produced. We discuss
this further in Section 10.

6.1.2. Result

Mutation analysis using the FULL set is not efficient enough
for incremental feedback on medium-to-large projects. Results
are summarized in Fig. 3, which also summarizes results from
RQ2 (Section 6.2). For smaller projects (those in submission group
SG1), analysis took a median of 16 s to run per submission. Un-
surprisingly, running time was higher for the larger submissions.
Mutation analysis on submissions groups SG2, SG3, and SG4 ran
in 84 s, 283 s, and 325 s respectively. Such slow feedback times
are less likely to help students to actively identify weaknesses
in their test suites as they develop projects. Such running times
would also impose an unacceptable additional load on an AAT.
Recall that parallelizing mutation analysis for a single submission
is precluded since multiple server cores are already in use to
process multiple submissions at once (see Section 3).

6.2. RQ2. Are existing selective mutation approaches cost-effective
alternatives to comprehensive mutation?

Having found that the FULL set of PIT operators is not efficient
enough for incremental feedback in AATs, next we evaluate the
cost-effectiveness of two operator subsets from the literature:
the SUFFICIENT set and the DELETION set. Shams (2015) found
both subsets to be reliable at measuring the adequacy of test
suites produced by novices, and found statement deletion to be
cost-effective. However, the costs of these subsets have not been
evaluated for the common educational context of automated as-
sessment systems, and their accuracy as test adequacy criteria has
only been evaluated on software produced by novice CS students
(i.e., like those in the CS2 corpus). We evaluate and compare
the performance of sufficient and deletion operators with that
of the FULL set of operators (Section 6.1), analyzing projects
from a wider range of sizes, complexities, and opportunities for
mutation.

AM. Kazerouni, J.C. Davis, A. Basak et al.

Cost = # Mutants per KSLoC

SG1 SG2
6000 —_—
5000 1 \\
O
S
0 4000
4
h~
82
< 3000
=
=
% 2000 ;
I\!Iedi?n ru"’f"g 16s 9s 8s 84s 60s 12s
time) - — - 3 = P
a 0
> & 8 2 & 2
O m O m
o o w w
5 0o > Q
[} (2]

The Journal of Systems & Software 175 (2021) 110905

== = Accuracy = Adj. R2 Predicting FULL Cov.

SG3 SG4
1.0
L0993
(&)
r0.8
5
F0.7 5T
068 2
5=
Los 8 L
<3
F0.4 X
~
r0.3 o
r 0.2 g
== ==,
283s 195s 44s 325s 225s 53s 0.0
_ [z - = z ’
S g ¢ S gz &
[o m [o i
m [
w L
5 2 5 a)
(2])

Fig. 3. Cost and accuracy of the FULL, SUFFICIENT, and DELETION subsets of mutation operators, for each of the submission groups. For each subplot, the left
axis represents cost (# mutants per KSLoC) and the right axis represents accuracy (adjusted R? in a model predicting FULL coverage). The y-axes are shared across
subplots. Inline text at the bottom of the charts indicates the median running time on our server.

6.2.1. Method

The SUFFICIENT set of PIT operators, proposed by Offutt et al.
(1996), is intended to produce significantly fewer mutants while
maintaining effectiveness. Laurent et al. (2017) extended PIT with
the SUFFICIENT operators. There is one exception: the Logical
Connector Replacement (LCR) operator—which creates mutants
by replacing logical AND and OR connectors—does not exist in
PIT. The && and || logical connectors in Java do not translate
to single bytecode instructions that can be mutated. Instead,
individual conditions translate to branching instructions, which
are mutated by ROR. The SUFFICIENT set of mutation operators
as implemented in PIT is in Table 3.

We define the DELETION set in PIT to be a subset of operators
that approximates the mutation operators proposed by Delamaro
et al. (2014), which deleted statements, operators, variables, and
constants. Their evaluation showed the subset to be a cost ef-
fective selective mutation approach. Since PIT operates on Java
bytecode, a precise replication of those deletion operators is not
practical. For example, Java bytecode does not explicitly dis-
tinguish between local variable initializations and assignments,
with the result being that local variable deletion as described
by Delamaro et al. is not currently implemented in PIT. Addi-
tionally, constants are treated as either literal values or as local
variables, depending on the compile-time optimizations that are
applied, complicating Delamaro et al.’s constant deletion (CDL)
mutation operator. We use six operators as the DELETION set
(listed in Table 3).!

We evaluate each subset of operators for each group of sub-
missions along two axes: cost and accuracy. Cost was measured
as described in Section 5.4.

To evaluate a subset for accuracy, we measured, for each
operator in the subset, the proportion of mutants that were
detected (i.e., the submission’s mutation coverage for the given
operator). We also measured the submission’s FULL mutation
coverage. With these data in hand, we used linear regressions of
the following form:

o Independent variables: For each operator in the subset, the %
of mutants detected

1 We did not use the OBBN mutation operator—variants of which mutate by
deleting bitwise operators and operands—because only 5.7% of submissions in
our corpus contained any bit operations.

e Dependent variable: Mutation coverage achieved under the
FULL set of operators
e Subjects: Submissions in the given group

Accuracy was therefore measured as the proportion of vari-
ance in FULL coverage explained by coverage of individual op-
erators in the subset being evaluated, i.e., the regression model’s
adjusted R?. Accuracy is measured against the FULL set because
it is the best available proxy for a test suite’s defect-detection
capability (see Section 6.1).

Using this approach, we measured the cost and accuracy for
the FULL, SUFFICIENT, and DELETION subsets of operators, for
each group of submissions SG1-SG4.

6.2.2. Result

The SUFFICIENT and DELETION sets are comparable in
terms of their accuracy, and the DELETION set is much more
cost-effective. However, its running time still presents chal-
lenges for larger projects. Results are summarized in Fig. 3. For
each submission group SG1-SG4, the figure depicts the cost in
two ways: mutants/KSLoC (boxplots) and running time (infixed
text). The figure also depicts the accuracy (line charts) for each
subset. We highlight two aspects of this figure.

First, although the DELETION set is slightly weaker than the
FULL and SUFFICIENT sets, it still provides a reliable assessment
of a test suite’s adequacy for most submission groups. Fig. 3
indicates that its adjusted R? is high, ranging from 0.84-0.95
across submission groups.

Second, although the DELETION set shows notable cost sav-
ings over the FULL and SUFFICIENT sets, there is still need
for improvement. The precipitous drop in cost from the FULL
set to the DELETION set is visually apparent in Fig. 3 (see the
boxplots). That said, offering automated feedback in an AAT using
the DELETION set remains a costly proposition, especially for
the more complex projects in submission groups SG3 and SG4.
The DELETION set produces relatively fast mutation results for
submissions in SG1 and SG2, taking a median 4 and 16 s per
submission, respectively (see the infixed text in Fig. 3). For sub-
missions in SG3 and SG4, the DELETION set took far longer: a
running time of approximately 1 min per submission. This time
is far greater than our target of approximately 30 s.

Briefly put, using the DELETION set is considerably cheaper
than using the SUFFICIENT set, which in turn is considerably
cheaper than the FULL set. These sizeable differences in cost,

AM. Kazerouni, J.C. Davis, A. Basak et al.

Table 3

The Journal of Systems & Software 175 (2021) 110905

Selective mutation approaches evaluated for use in an AAT in this paper, including the incremental subsets evaluated
in Section 7.2. The Ref. column refers to the first proposal of the specified subset.

Approach PIT operators

Ref. Evaluated

FULL All in Table 4 in Kintis et al.

(2018), omitting

{ConditionalsBoundary,

NegateConditionals,
PrimitiveReturns,

DeMillo et al. (1988) RQ1

FalseReturns, InvertNegatives,

AOR1 }

SUFFICIENT
DELETION

AOR, ROR, ABS, UOI

VoidMethodCalls,
MemberVariable,
ConstructorCalls

RemoveConditionals, AOD,
NonVoidMethodCalls,

Offutt et al. (1996) RQ2
Delamaro et al. (2014) RQ2, RQ3

2-op subset of DELETION

1-op subset of DELETION RemoveConditionals

RemoveConditionals, AOD

a RQ4, RQ5
a RQ4, RQ5

4Proposed in this paper.

coupled with relatively small differences in accuracy, suggest that
the PIT DELETION set is a promising direction for cost-effective
mutation analysis.

This analysis can be seen as a replication study that gathers
more support for previous work evaluating deletion operators.
We substantiated findings from Untch (2009), Deng et al. (2013),
Delamaro et al. (2014), and Dereziniska (2016) that reported mu-
tation by deletion to be highly cost-effective. We also lent some
generality to claims from Shams (2015), who found that state-
ment deletion (SDL) represented a promising path toward the use
of mutation testing for projects produced by novice programmers.

7. Core study: Proposing new approaches

Although the DELETION set is an improvement over other
selective subsets, we found that it is still too expensive for larger
student projects (Section 6.2). Therefore, we explore the possibil-
ity of reducing its cost further while maintaining its effectiveness.

We use the DELETION set as a starting point because it has
two desirable properties. First, it is cost-effective. It already pro-
vides a good approximation of FULL mutation adequacy at a
fraction of the cost of FULL mutation as well as that of other
prominent operator subsets in the literature (Untch, 2009; De-
lamaro et al., 2014). Shams and Edwards (2013) found it to
be a reliable measure of test adequacy in projects produced by
novice programmers, and we have confirmed this property in our
Motivational study (Section 6).

Second, and critically, DELETION operators tend to produce
a significantly smaller proportion of equivalent mutants than
other selective subsets like the sufficient sets from Offutt et al.
(1996), Siami Namin et al. (2008), Untch (2009) and Delamaro
et al. (2014). It is impossible to automatically discard or to avoid
creating these mutants, because determining program equiva-
lence is undecidable (Budd and Angluin, 1982). Therefore, creat-
ing a mutation-adequate test suite requires the tester to manually
identify and ignore these mutants during testing. At best, this is
unproductive, because this activity does not help the tester to
strengthen their test suite, and may even reduce their reliance
on feedback because the false positivity rate is too high. At worst,
the tester (particularly a student) may mis-classify an equivalent
mutant as detectable, and futilely try to devise a test case to do so.
Reducing the incidence of these mutants would greatly increase
the utility of mutation-based feedback to students.

While there do exist non-DELETION operators that produce
few equivalent mutants, DELETION operators are more attractive
since they tend to produce fewer mutants than other operators.
As an example, consider the arithmetic operator replacement

(AOR) mutator, which mutates arithmetic operations by replacing
arithmetic operators in expressions. Empirical measurements
from Yao et al. (2014) suggested that AOR produces few equiv-
alent mutants. However, for a given expression—e.g., a + b—AOR
would produce four mutants: a - b, a * b, a/b and a % b. The
arithmetic operator deletion (AOD) mutator, on the other hand,
would produce only two mutants for the same expression: a
and b. As we have seen in the literature (Delamaro et al.,, 2014)
and in Section 6.2, detecting a DELETION mutant—like those
produced by AOD—often results in detecting other non-equivalent
mutants. So, even though both AOR and AOD are likely to pro-
duce few equivalent mutants, the AOD mutator is more attractive
since it also produces a smaller total number of mutants. Similar
properties are observable for other DELETION operators.

In this section, we investigate whether a subset of the DELE-
TION set performs comparably well at approximating mutation
adequacy. First, we evaluate the predictive power added by indi-
vidual DELETION operators to approximate FULL coverage (Sec-
tion 7.1). We conduct this step on the entire corpus of 1389
submissions so as to not overfit to individual submission groups.
This results in an ordering in which DELETION operators may be
chosen (or omitted) to produce a cost-effective approximation
of FULL coverage. We then use this ordering to incrementally
evaluate subsets of the DELETION set on each submission group
SG1-SG4 (Section 7.2).

7.1. RQ3: Can the cost of mutation by deletion be reduced further
while maintaining effectiveness?

7.1.1. Method

To determine effectiveness, we formulate a new regression
problem similar to the one described in Section 6.2. Instead of
running it on individual submission groups, we perform this
regression on the entire corpus of submissions.

We used a statistical procedure to select a subset of mutation
operators out of an initial superset. We fit linear models in each
step using the statsmodels Python package (Seabold and Perk-
told, 2010). The goal is to produce a subset of operators (selective
mutation) that incur acceptable losses in effectiveness.

Forward selection (Bozdogan, 1987) is a statistical feature
selection method. Starting with an empty model (i.e., with no
features), we consider features one at a time, measuring how
much each one improves the model. The best-performing feature
is added and the procedure is repeated for all remaining features.
This process repeats until the model stops improving, or until
there are no more features.

AM. Kazerouni, J.C. Davis, A. Basak et al.

Table 4

The Journal of Systems & Software 175 (2021) 110905

Forward selection on the entire corpus of submissions, choosing DELETION operators. White cells
contain cumulative values for intermediate models, after adding each operator. For example, the
AOD operator adds a median 140 — 102 = 38 mutants per submission. Gray cells contain values
from the final model. Though feature selection was done on the basis of BIC, we report adjusted

R? for the sake of interpretability.

Operator added # Mutants generated Adj. R Coeff. Std. error
Median % of DELETION % of FULL
(intercept) - - - - 0.03 0.008
1 RemoveConditionals 102 36.04% 7.04% 0.78 0.35 0.011
2 AOD 140 49.47% 9.67% 0.88 0.19 0.007
3 NonVoidMethodCalls 236 83.39% 16.30% 0.91 0.28 0.012
4 VoidMethodCalls 240 84.81% 16.57% 0.92 —0.04 0.005
5 MemberVariable 271 95.76% 18.72% 0.92 0.06 0.009
6 ConstructorCalls 283 100.00% 19.54% 0.92 0.04 0.007
Forward selection is generally used when one wishes to select 7.1.2. Result

a small subset from an initial pool of features. Our features are
individual mutation operators. However, each feature carries with
it some computational cost. Therefore, forward selection is an
appropriate feature selection strategy since it will (theoretically)
help reduce the number of operators while maintaining overall
effectiveness.

We start with no operators, and at each step we add the
operator that minimizes the Bayesian Information Criterion (BIC)
(Schwarz, 1978). If two operators perform equally well when
added to the model, we select the one with lower cost, i.e., the
one that produces fewer mutants. BIC was chosen over R? since
it is better at predicting model performance on future, unseen
data. It was chosen over the closely related Akaike Information
Criterion (AIC) because BIC penalizes additional features more
heavily than AIC and might result in a simpler model (Bozdogan,
1987). This benefits our aim of reducing the number of mutation
operators. The procedure stops when none of the remaining
operators reduce BIC any further.

We used the procedure described above to incrementally
choose operators in order of decreasing value added. Since our
goal is to minimize cost, we chose operators from the cheapest
known-good subset of mutation operators, the DELETION set. At
each step, we add the next best operator that further improves
the model according to BIC. This procedure therefore yields a
sequence of DELETION operators ordered by the additional value
they bring to the model. Further adjustments may be made to this
sequence based on cost considerations, e.g., by omitting operators
that add little value on top of previously chosen operators.

Note that although forward selection is a greedy approach,
in this case it produced an optimal ordering of operators. That
is, at no point was any single DELETION operator “incorrectly”
chosen over two or more other operators that were cheaper and
performed better. This was confirmed with a brute-force exam-
ination of the 26 — 1 = 63 possible combinations of DELETION
operators. As mentioned earlier, selecting mutation operators in
this way gives a sequence of operators ordered by the additional
value they bring to a test adequacy measurement. In RQ4, we
use this ordering to build incremental cost-effective subsets of
DELETION operators for each submission group (see Section 7.2).

Siami Namin et al. (2008) also used a feature selection proce-
dure to select mutation operators in their analysis of C programs
using Proteum. Instead of forward selection, they used least an-
gle regression (LARS), which is appropriate for high-dimensional
data, e.g., when the number of available features is much larger
than the number of data points. Indeed, Namin et al. chose from
108 candidate Proteum operators using a dataset of 7 represen-
tative C programs. In contrast, in this paper we reduce from
6 candidate PIT operators (the DELETION set) using a dataset
of 1389 programs, an experimental setup that is well-suited to
forward selection.

10

A small subset of DELETION operators is responsible for
most of the DELETION set’s value, indicating that its cost can
be reduced further. Applying this process to the entire corpus
of 1389 submissions yielded DELETION operators in the order
described in Table 4. Highlighted cells indicate cost, accuracy
(adjusted R?), and errors from the final model, and other cells
indicate cost and accuracy from intermediate models considered
during forward selection. Notice that all the DELETION operators
were included in the final model, suggesting that each of them
brings some additional explanatory power to the model. In other
words, in our experiment none of the DELETION operators is
completely subsumed by a combination of the others.

The DELETION operators were able to explain 92% of the
variance in mutation coverage achieved under the FULL set (see
the highlighted R? value in Table 4), while doing just under 20% of
the work. This is in keeping with previous findings that mutation
by deletion is highly effective, and lends further support to our
findings in Section 6.2.

Critically, a small subset of DELETION operators is responsible
for most of its effectiveness. Model improvement tended to plateau
after the first three operators were selected. The RemoveCondi-
tionals and AOD operators alone performed reasonably well at
predicting coverage under the FULL set (adjusted R> = 0.88).
NonVoidMethodCalls was selected next, bringing with it a slight
increase in effectiveness: R?> goes from 0.88 to 0.91. The ad-
dition of subsequent operators resulted in moderate successive
increases in cost, and the model never improved beyond adjusted
R? = 0.92 (rounded). These diminishing returns suggest that, af-
ter a certain point, additional DELETION operators are not worth
the cost they incur.

7.2. RQ4: How do the benefits of different mutation strategies vary
by project size?

Recall that the submission dataset is heterogeneous in size
and complexity (Section 5). The models presented in Table 4 are
based on the entire corpus of 1389 submissions. However, it is
possible and plausible that different operator subsets perform
better for submissions belonging to different groups, due to dif-
ferences in the available opportunities for mutation. For example,
submissions in SG1 overwhelmingly belong to early assignments
in the CS 2 course. They are small and simple codebases that
present comparatively fewer mutation opportunities, even when
normalizing by program size.

Submissions in groups SG2-SG4 were larger not only in terms
of KSLoC, but also in terms of the expected mutation opportu-
nities available per line of code. For example, SG1 submissions
contained an average 20.52 (¢ = 18.03) math operations per
KSLoC, while submissions in SG2, SG3, and SG4 contained be-
tween 69.20 (o = 27.12) and 84.94 (¢ = 35.02) math operations

AM. Kazerouni, J.C. Davis, A. Basak et al.

per KSLoC. That is, submissions in SG2-SG4 provided many more
opportunities for the AOD mutation operator to act on each line
of code than did submissions in SG1. Similar per-LoC trends were
observed for other program constructs like the number of method
invocations, variables used, and parenthesized expressions.

It is therefore no surprise that submissions in SG1 produced
significantly fewer mutants per KSLoC than projects in SG2-SG4.
Submissions in SG1 produced an average of 2772 (o = 719)
mutants per KSLoC, while submissions in SG2, SG3, and SG4
produced an average of 3896 (o = 738), 4076 (0 = 1104), and
4443 (o 1034) mutants per KSLoC, respectively. An analysis
of variance followed by post-hoc analysis using Tukey’s HSD test
showed that the pairwise differences in mutants per KSLoC be-
tween groups SG2-SG4 is at least an order of magnitude less than
the difference between SG1 and each of the other submission
groups (p < 0.05 for all pairs).

As an example of how this might affect results, consider that
the cyclomatic complexities for submissions to Projects 1 and
2 are substantially lower than those for Projects 3-7 (see Ta-
ble 2). This translates into relatively fewer mutation opportunities
for the RemoveConditionals operator in the smaller and simpler
projects. It would be reasonable to expect this operator to per-
form worse on these projects than on Projects 3-7. Conversely,
in the larger projects, it may mean more “impactful” mutants,
i.e., RemoveConditionals mutants whose detecting tests would also
detect mutants from other operators.

We conjecture that the choice of DELETION operators may
differ based on the actual programs under test. Therefore, we
investigated the differing cost-effectiveness of operator subsets
based on the programs under test.

7.2.1. Method

We incrementally built “n-operator” subsets of DELETION op-
erators for increasing values of n. Operators were selected one at
a time in the order obtained through forward selection (Table 4),
and each resulting subset was evaluated separately against each
submission group using a linear regression of the form described
in Section 6.2.

7.2.2. Result

Mutation adequacy on larger projects can be approximated
with fewer mutation operators. Composite results (including
subset accuracy, computational cost, and running time cost) are
summarized in Fig. 4, which is a “zoomed in” version of Fig. 3.
The 1-op, 2-op, and 3-op subsets have been included, and the
FULL and SUFFICIENT subsets have been removed. We include
the DELETION set to serve as a baseline for cost comparisons. Ac-
curacy measures are made with respect to the FULL set (i.e., the
strongest known test adequacy criterion for Java programs). Fig. 4
includes the incremental subsets (the 1-op and 2-op subsets)
proposed in Table 3.

o 1-op Subset. The first subset comprises only the RemoveCon-

ditionals operator, which removes conditionals by replacing
them with boolean literals (true or false).
The 1-op Subset shows poor performance for SG1, the group
of small submissions, explaining a meager 47% of variance
in FULL coverage (see the right most point in the first
subplot in Fig. 4). For the groups in the middle, SG2 and SG3,
RemoveConditionals is able to explain 88% and 86% of the
variance in FULL coverage, respectively. It is able to explain
90% of the variance in FULL coverage for group SG4 (the
group containing the largest submissions).

e 2-op Subset. This subset contains the 1-op Subset plus the
AOD operator, which eliminates arithmetic operators from
statements by removing operands.

11

The Journal of Systems & Software 175 (2021) 110905

This subset does better at predicting FULL coverage for all
submission groups, with a natural increase in cost. The two
operators—RemoveConditionals and AOD—are able to explain
over 92% of the variance in FULL coverage for SG2-SG4. The
SLzlbset still performs relatively poorly for SG1, with adjusted
R- = 0.80.

e 3-0p Subset. This subset contains the 2-op Subset plus the
NonVoidMethodCalls operator, which removes calls to non-
void methods by replacing their return values with the given
type’s default value.

The inclusion of NonVoidMethodCalls results in negligible
improvements in model performance for all submission
groups. The model continues to perform well for groups
SG2-SG4 (adjusted R?> > 0.94), and it continues to perform
poorly for group SG1 (adjusted R?> = 0.84). Note that adding
the NonVoidMethodCalls operator nearly doubles the costs
incurred by the previous subset for each submission group.

e 6-op Subset. For the sake of brevity, we jump to results for
the entire available set of DELETION operators, i.e., contain-
ing all 6 deletion operators listed in Table 3. With the entire
DELETION set included, models are able to explain a high
amount of variance in FULL coverage (94% or higher) for
submission groups SG2-SG4.

For group SG1, the model is only able to explain 85% of the
variance in FULL coverage. For all groups, this represents a
small improvement from the 3-op subset.

In addition to examining the number of mutants produced
by each incremental subset, we also estimated their running
times on our system, using the scheme described in Section 5.4.
Normalizing by program size, we obtain a composite measure
of running time cost for a given subset of operators, in seconds
per KSLoC, facilitating comparisons across submission groups. The
FULL and DELETION sets took an estimated median of 206 and
35 s per KSLoC, respectively. The 3-op subset offered little im-
provement over the DELETION set (median = 36 s per KSLoC).
Improvements were more pronounced for the 2-op and 1-op
subsets, with respective estimated running times of 24 and 18
s per KSLoC. It is evident that the estimated running time impact
of the larger subsets of operators (including the DELETION and
even the FULL set) are feasible for smaller projects (SG1), but not
for larger projects (SG2-SG4).

8. Validation study

Our goal in Sections 6 and 7 was to develop a scalable ap-
proach to provide students with rapid mutation-based feedback
on the quality of their test suites. Our findings suggested that only
one or two DELETION operators can approximate the mutation
coverage that would be achieved under the FULL set of opera-
tors. However, due to their scale and context, the studies suffer
from threats to internal and external validity. We conducted an
additional study to validate our findings by addressing the two
most critical threats: (1) results that may be over-fitted to our
educational context, and (2) the presence of equivalent mutants
in our analysis. Discussion of the remaining and (we believe) less
critical threats is deferred to Section 10.

We evaluated the cost-effectiveness of our chosen mutation
operators using a dataset published by Kintis et al. (2016),2 used
in their comparison of various mutation testing tools for Java. The
dataset comprises codebases, mutation-adequate test suites, and
manually marked equivalent mutants for 12 methods in 6 Java
projects. According to Kintis, 10 methods were randomly chosen

2 http://pages.cs.aueb.gr/~kintism/papers/scam2016/. Accessed: April 25,
2020.

http://pages.cs.aueb.gr/~kintism/papers/scam2016/

AM. Kazerouni, J.C. Davis, A. Basak et al.

Cost = # Mutants per KSLoC

The Journal of Systems & Software 175 (2021) 110905

== = Accuracy = Adj. R2 Predicting FULL Cov.

SG1 SG2 SG3 SG4
10001 o
0.9 é
3 800 08 5
= r0.7 =2
¢ z's
5 - r06 8 2
82 600 55
St F0.58 5
- (5
3 3 L0.4 &
& 400 L 03 X
. + = = 2
200+ ? 1 L Lo.1
:\i";‘:ia" running 8s 8s 3s s 12s 11s 10s 8s 44s 38s 29s 18s 53s 46s 34s 2s |4
5 & & § 5 ¢ & ¢ 58 ¢ & § 53 ¢ & §

L [[w

.}) - .}

L L w L

a o o a

Fig. 4. The cost and accuracy of our proposed incremental subsets of operators. For each subplot, the left axis represents cost (# mutants per KSLoC) and the right
axis represents accuracy (Pearson’s r w.r.t. FULL coverage). Y-axes are shared across subplots. Inline text at the bottom of the charts indicates the median running

time on our server.

from 4 real-world projects (Commons-Math, Commons, Pamvotis,
and XStream). The projects ranged from 5505 LoC to 17,294 LoC,
and the chosen methods ranged from 18 to 55 LoC. They chose
two more methods (Bisect and Triangle), which are 23 and 39 LoC
long, from an oft-cited software testing textbook (Ammann and
Offutt, 2008). The methods and mutants they spawned are listed
in Table 5.

Analyzing this dataset helped us to address two threats to the
validity of our previous studies.

External validity. Threat: Though our corpus comprised 1389
programs of varying sizes and complexities, our findings may not
generalize beyond the educational context, or even beyond our
particular educational context. Mitigation: The validation dataset
contains several real-world libraries and frameworks that are
built for a range of purposes (i.e., String manipulation, network
management, mathematics and statistics, and XML parsing) and
used by thousands of users (according to Maven and SourceForge;
see Table 5). If our Core results hold under analysis of this dataset,
there is a better case for generalizability.

Internal validity. Threat: We did not exclude equivalent mu-
tants from our Motivational and Core studies. The problem of
automatically identifying these mutants is undecidable (Budd
and Angluin, 1982), but can be done by manually inspecting
programs. This was infeasible in our study due to the size of
the corpus (Mprgjecs = 1389, Nmytanes = 2.5M), and would be
impossible to operationalize in an automated assessment context.
Mitigation: In the validation dataset, Kintis et al. have manually
marked equivalent mutants, allowing us to exclude them from
the analysis. If our chosen operator subsets from the Core study
prove to be cost-effective using the validation dataset, our find-
ings may be said to be free of this threat. Throughout this section,
we measure the costs of operator subsets as their relative cost
savings over the FULL set.

8.1. RQ5: How do our proposed mutation strategies perform in terms
of cost-effectiveness against a separate validation dataset?

Having proposed and evaluated the cost and reliability for
the DELETION set and incremental subsets on our submissions
corpus, we seek to validate our findings along the same axes on a
second dataset. In this section, we measure the DELETION, 3-op,
2-op, and 1-op operator subsets in terms of their computational
cost and reliability. We interpret results in terms of the trade-off

12

between cost savings and effectiveness as compared to the FULL
set.

Here is the context for the validation study. Mutation analysis
was run on the codebases studied by Kintis et al. using the
FULL set of PIT operators described in Study 1 (see Section 6.1).
This produced a dataset of 3037 mutants generated by 17 muta-
tion operators. Of these, 355 (11.69%) were equivalent mutants.
Note that the total number of mutants produced is higher than
the number of PIT mutants reported by Kintis et al.: this is
because PIT’s available mutation operators have been extended
since 2016, also by Kintis et al. (2018). We computed full mu-
tation matrices for each project—for each detectable mutant, we
obtained all of its detecting tests. In other words, for each test,
we obtained the list of mutants it detected.

Some additional work was needed to prepare the dataset for
analysis. As mentioned in Section 5.2, we used an improved
version of PIT, whose augmented set of mutation operators offers
the strongest measurement of test adequacy currently available
for Java programs (Kintis et al., 2018). As a result, this version
of PIT produced more mutants than those published by Kintis
et al. (2016), which resulted in there being previously unmarked
equivalent mutants. These cases were few because Kintis et al.
provided equivalent mutants from pJava and MAJOR in addition
to (an older version of) PIT. So the only mutants that needed
further checking were those that (1) were not produced by any of
the three tools compared by Kintis et al. and (2) were not detected
by the provided mutation-adequate test suites. Additionally, it
was necessary to add two assertions to the Pamvotis test suite
to detect two undetected mutants. These mutants affected only
the private global state in the class under test (i.e., the value of
an instance variable), but not the method’s outcome (either with
a single or repeated calls). However, they could affect calls to
other methods, and therefore cannot be considered equivalent.
Detecting these mutants involved: (1) modifying a private field to
be publicly accessible, and (2) adding one assertion each to two
existing test cases to check the value of the field. The addition of
these assertions did not affect the impact of the modified tests
other than to detect the targeted mutants. These were the only
code changes made to the dataset.

Table 5 describes the subjects and the mutants they spawned
under different operator subsets. Missing values indicate that the
subject did not produce any new DELETION mutants in the cur-
rent incremental subset. For example, the Triangle#classify

AM. Kazerouni, J.C. Davis, A. Basak et al.

Table 5

The Journal of Systems & Software 175 (2021) 110905

Projects tested in the validation study, and the number of mutants and equivalent mutants produced by the FULL, DELETION, and incremental subsets of mutation
operators. Projects are sorted by Usage: for the real-world projects, reports the number of Maven artifacts that depend on them (*since Pamvotis is not on Maven,

we report the # downloads on SourceForge) as of May 6, 2020.

Usage Project Method Subset
FULL DELETION 3-0p 2-0p 1-op
% Eq. # % Eq. # % Eq. # % Eq. # % Eq.
- Bisect sqrt 212 10% 24 4% 23 4% 22 5% 6 17%
- Triangle classify 463 9% - - - - 52 4% 34 0%
1.7k XStream decodeName 305 17% 54 28% 52 27% 34 32% 24 38%
1.6k Commons-Math gcd 367 19% - - 42 10% 40 10% 22 9%
orthogonal 370 3% 56 0% 52 0% 48 0% 10 0%
4.4k* Pamvotis addNode 424 13% 52 8% 46 9% 44 9% 6 0%
removeNode 108 1% 13 0% 10 0% 8 0% 6 0%
16.3k Commons-Lang lastIndexOf 132 8% - - 19 5% 18 6% 16 6%
subarray 93 10% 15 0% 14 0% 10 0% 8 0%
toMap 96 18% 19 11% 16 13% 12 17% 10 0%
capitalize 137 18% 25 4% 24 4% - - 14 7%
wrap 330 1% 52 6% 51 6% 32 9% 16 0%
Total 3037 12% 424 8% 401 8% 334 9% 172 8%
subject only produced DELETION mutants belonging to the AOD 1.0
and RemoveConditionals operators; we do not report numbers for é
subsequent incremental subsets (3-op subset and the DELETION 0.91
set), since they would contain no additional mutants. 0081 *
g0
8.2. Method 2071
S
. oy ©
We evaluated the cost and reliability® of the DELETION set ;.0-6‘
and the incremental subsets proposed in Section 7. We had the 051
following experimental design: '
e Independent variables: Mutation operator subsets: the 0.41 .
DELETION, 3—0p., 2-op, and 1-op subgets_ ' DELETION _ 3-op 2-0p 1-op
e Dependent variables: Cost and reliability of the subsets Subset

being evaluated
e Subjects: 12 methods from 6 Java projects

We measured each subset’s computational cost as the number
of mutants it would produce, as a proportion of the number
that would have been produced by the FULL set. This relative
cost measures allow comparisons of cost savings across subject
programs, which are of different sizes.

Evaluating a subset’s reliability entails measuring its strength
as a test adequacy criterion. In other words, if a tester were to
stop testing after satisfying the given subset of mutation opera-
tors, how good would their tests be? Analysis was carried out on
each project as follows:

1. We generated a complete set of mutants M using the FULL
set of operators, and discarded all equivalent mutants that
were identified by Kintis et al. and ourselves.

2. We produced a matrix of detectable mutants and detect-
ing tests by testing each mutant in M using a mutation-
adequate test suite T (provided by Kintis et al.).

. For each operator subset S being evaluated, we constructed
a subset-adequate test suite Ts € T and measured its
mutation coverage, i.e., the proportion of mutants in M
that were detected by Ts. This measurement is the subset’s
reliability.

We did this by choosing the smallest subset of tests that
detected all mutants generated by S. The detecting tests
were chosen from the mutation matrix. Note that there
can exist multiple such smallest test sets, and results are
dependent on the order in which tests are selected and the

3 Note the change in terminology from “accuracy” to “reliability”. Instead of
statistically predicting FULL mutation adequacy, we concretely measure how far
toward it we get when we satisfy a given operator subset.

13

Fig. 5. Mutation coverage: Proportion of FULL mutants detected by the
subset-adequate test suite.

power of individual tests. Following Delamaro et al. (2014),
we shuffled the available test set to minimize order-related
bias, and we repeated the test selection process 3 times per
project to minimize power-related bias, selecting the test
set with the median mutation coverage.

4, The mutation coverage of subset S was measured as the
percentage of mutants in M (the complete set of mutants)
that were detected by the subset-adequate test suite Ts.

8.3. Result

Subset performance is in agreement with the results ob-
tained in the Core study (Section 7). Results are summarized in
Figs. 5 and 6, as distributions across subjects. Fig. 5 depicts the
mutation coverages for each subset. That is, for each subset S,
it shows the proportion of FULL mutants that were detected by
the subset-adequate test suite Ts. For example, the DELETION-
adequate test suite detected a median 96% of mutants from the
FULL set of operators. The 2-op and 1-op subsets are nearly as
effective at achieving mutation coverage as the DELETION set, de-
tecting a median 95% and 89% of mutants, respectively. The 3-op
subset brings little to no improvement over the previous subset,
i.e., it appears that the NonVoidMethodCalls operator brings little
additional value over the RemoveConditionals and AOD operators.
This is in agreement with observations from RQ4 (Section 7.2).

In addition to the mutation coverage, we consider the com-
putational cost of the subsets under study, i.e.,, the number of
mutants that will be produced and tested. Fig. 6 depicts the

AM. Kazerouni, J.C. Davis, A. Basak et al.

ﬁﬁ;

DELETION

0.175

0.150

o
=
N
v

% of FULL Mutant Count
o
=
o
S

3—6p 2—6p 1—6p

Subset

Fig. 6. Computational cost: Number of mutants produced by each subset,
expressed as a proportion of the FULL number of mutants.

number of mutants produced by each subset as a proportion of
the number that would have been produced by the FULL set. We
observe cost decreases in the expected order, with subsets having
the following median costs: DELETION (15%) > 3-op (14%) >
2-op (11%) > 1-op (6%). We can see that the 3-op subset brings
little cost reduction over the DELETION set, while the 2-op subset
and 1-op subset bring better cost savings over their respective
preceding incremental subsets. These results are in keeping with
observations from Sections 6 and 7. Observe that proportions are
close to those seen in Table 4 (see the column titled “% of FULL").

Finally, we measured the proportion of all equivalent mutants
that were produced by the DELETION set and each incremental
subset. Percentages for individual subjects can be seen in Table 5.
The DELETION set produced a median of 6% of all equivalent
mutants (i.e., it avoided producing 94% of the equivalent mutants
that would otherwise have been produced). This is in keep-
ing with previous findings (Untch, 2009; Delamaro et al., 2014).
This performance can only improve when we eliminate oper-
ators from the DELETION set. The 3-op and 2-op subsets also
produced a median of 6% of all equivalent mutants. The 1-op
subset was most impressive in this regard, producing a median
0 equivalent mutants. We can see in Table 5 that the 1-op subset
produced O equivalent mutants for 7 out of 12 projects. The
reduced propensity of the DELETION set and its incremental sub-
sets for producing equivalent mutants bodes well for its potential
utility as a feedback mechanism for student-written software
tests.

9. Discussion
We discuss the implications of our findings.
9.1. Choosing a subset of operators

What subset of DELETION operators is the most cost-effective in
general? We have seen that the DELETION set, though cheaper
than the FULL and SUFFICIENT sets (Fig. 3), still includes a
component of unproductive cost. The DELETION operators’ ability
to approximate FULL coverage improves and then tapers off after
an appropriate subset of mutation operators has been chosen.
Based on the changing R? values in Table 4, one might conclude
that the critical point is after the second (AOD) or third (NonVoid-
MethodCalls) operator is added to the model. However, including
NonVoidMethodCalls increases the total cost of the previous two
operators by nearly 50%, but only explains an additional 3% of
the variance, which is a relatively small improvement over the
previous subset. We believe that this large additional cost is not

14

The Journal of Systems & Software 175 (2021) 110905

worth the value added to the model. Selective mutation with
NonVoidMethodCalls takes a median 38 s and 46 s for SG3 and
SG4, respectively. These running times are far beyond our target
time of 30 s as specified in Section 3. These diminishing returns
were also observed in the Validation study.

Fig. 4 is a “zoomed in and panned right” version of Fig. 3,
with the FULL and SUFFICIENT sets excluded, and the 1-op and
2-op subsets included. For submissions in SG2-SG4, subsets of
the DELETION set are able to bring huge cost savings with small
losses in accuracy. Similar results were seen in the Validation
study—in Figs. 5 and 6, we see that the 2-op subset achieved
a median mutation coverage of 95%, while consistently produc-
ing under 15% of the total number of mutants. Inclusion of the
NonVoidMethodCalls operator substantially increases the cost with
no improvements in effectiveness. Taking cost and effectiveness
into account, we conclude: In the educational context, the 2-
operator subset is the most practical set for fast and effective
mutation analysis.

Why does RemoveConditionals perform so effectively by itself?
We found that RemoveConditionals alone was effective at ap-
proximating FULL coverage for the groups of larger submissions
SG2-SG4 (Section 7.2). This operator replaces conditionals with
Boolean literals, effectively excluding (or ensuring the execution
of) all statements guarded by a condition. Mutation analysis using
this operator has strong ties to object branch coverage (OBC),
one of the strongest forms of code coverage for Java programs.
OBC requires students to write tests that exercise every Boolean
condition generated in their solution’s compiled bytecode. Re-
moveConditionals can be seen as a stronger form of this measure,
since it is sensitive not only to the execution of conditions, but
also to the propagation of program state or output from those
conditions to the tests.

This finding may be clearer in light of the kinds of pro-
grams we investigated. Our corpus included submissions from an
upper-level Data Structures & Algorithms (CS3) course, nearly all
of which were clustered in submission groups SG2-SG4. These
projects require significant control flow components to imple-
ment complex behaviors, so it is plausible that the conditions in
the control flow logic would be the most critical aspects of quality
testing. Similarly, in the Validation study, RemoveConditionals was
a highly effective lone operator, achieving a median mutation
coverage of 89% (Fig. 5). That the operator tends to produce few
equivalent mutants (median = 0) only serves to increase its at-
tractiveness as an option for selective mutation. We recommend:
AATs should use the 1-op subset for larger and more complex
projects (SLoC > 666).

How does one evaluate tests for smaller submissions (group SG1)?
In Section 7.2, notice that the 3-op subset—or indeed, the entire
DELETION set—is unable to achieve a good approximation of
coverage under the FULL set for smaller submissions. This throws
into question whether selective mutation is an effective approach
for these projects. The time to run mutation analysis on these
submissions is so low (u = 22.2 s,0 = 16.8 s) that a cheaper
approximation of the FULL set is unnecessary. In light of these
differences in the effectiveness and cost of mutation testing on
our data set, we report: AATs may use the FULL set of mutation
operators for small and simple submissions (SLoC < 341).

However, it is worth considering whether mutation testing is
an over-engineered test evaluation strategy for smaller programs
of such minimal complexity. The large number of mutants pro-
duced could potentially overwhelm beginning CS students. Where
possible, instructors might opt for all-pairs methods, or they
could curate a set of faulty implementations for students to detect
with their tests (Politz et al., 2014; Wrenn and Krishnamurthi,
2019).

AM. Kazerouni, J.C. Davis, A. Basak et al.

9.2. Operationalizing feedback

What might feedback based on mutation analysis look like? Ul-
timately, the goal of our research is to improve the quality of
student-written test suites. Mutation analysis only furthers this
goal if the students get feedback about the process in some
way. Similar to code coverage, it is easy to generate feedback
for students by highlighting the lines of code that contain un-
detected mutations. Consider the code snippet in Listing 1. The
AOD mutation operator was applied to the highlighted line (line
2), changing it to return i. The highlight indicates that all tests
passed even with the specified mutation in place. In other words,
no test behaves differently whether the output is i or i * i. A
combination of information—the highlighted line and the exact
mutation that was applied—gives the student an explicit strategy
for improving the test suite based on the provided feedback,
i.e., write a test that makes an assertion about the function’s
return value. Similar feedback may be devised for other mutation
operators.

1 public int probeSquare(int i) {

2 return i * i;

3 // Tests did not check the use of this arithmetic
4 // expression.

53}

Listing 1: A snippet highlighting a line that contained a
surviving mutant (similar to reports emitted by PIT).

In addition to the empirically validated benefits of DELETION
mutation—namely, its cost-effectiveness and reduced propensity
for producing equivalent mutants—we believe that DELETION
mutation offers a third potential benefit over existing mutation
approaches: simplicity of feedback. When a student is faced with
an undetected DELETION mutant, there are two possibilities: the
deleted code is unchecked, or it is redundant. For other mutation
operators, the situation is more complex. An undetected mutant
may mean that the test suite has failed to cover a subtle, po-
tentially obscure, possibly unreachable edge case (e.g., see Yao
et al’s (2014) work on equivalent and “stubborn” mutants). Con-
structing a test case to detect an undetected mutant could require
knowledge about the specific mutation operator used, which
further implies a basic understanding of mutation analysis. DELE-
TION mutation avoids this added complexity by producing fewer
mutants, which are more obvious and more likely to be action-
able.

How does this compare with condition coverage? Offutt and
Voas showed that condition coverage is subsumed by mutation
coverage, i.e., if a test set satisfies mutation coverage, it also
satisfies condition coverage. Condition coverage requires that
all conditions—including individual conditions that are joined
with conjunctions or disjunctions to form compound decisions—
be made to evaluate to true or false at least once (Myers
et al.,, 2011). This criterion is subsumed by the RemoveConditionals
mutation operator. That is, detecting all RemoveConditionals oper-
ators means that all conditions must have been executed at least
once by the test suite.

Condition coverage is satisfied when when students execute
the code, regardless of whether or not they check that the be-
havior is correct. In stark contrast, mutation testing requires the
test suite to recognize that the mutant has failed to be detected
by the test suite. Specific to our corpus of submissions, consider
Listing 1 again. It depicts a function from a project in our corpus
that achieved complete condition coverage but zero mutation
coverage. It is a simple probing function that helps determine a

15

The Journal of Systems & Software 175 (2021) 110905

record’s position in a hash table. The student’s tests only ver-
ified that records existed in the hash table after insertion, but
never that records were inserted at the right positions. Code
coverage measures were unable to detect this deficiency, since
the probeSquare function was executed (“covered”) during the
insertion process.

Indeed, this discrepancy was reflected in submissions across
our entire corpus. Condition coverage scores tended to cluster
close to the 100% mark (u 0.98, 0 0.03). Notice that
students almost universally had good condition coverage scores.
This may be because they were graded in part on their coverage
scores. In contrast, mutation coverage using only the 2-op Subset
(RemoveConditionals and AOD) tended to be far lower (u
0.81, 0 = 0.18). These outcomes are worse than they seem, since
in our experience condition coverage of at least 80% is fairly trivial
to reach (sometimes through pathological or bad-faith tests).

9.3. Future directions

This paper sets the stage for educators to offer students in-
cremental feedback based on mutation analysis. As our particular
goal, we reduced the cost of the analysis such that it can produce
reliable feedback for students’ test suites in under 30 s on typical
institutional AAT hardware. But our approach covers contexts
beyond this experimental setting. The subsets of DELETION op-
erators evaluated in Section 7 provide incrementally cheaper
approaches with which to provide mutation-based incremental
feedback. These approaches can be selectively applied to a diverse
set of contexts, governed by institutional needs, budgets, or other
factors.

In addition to its cost and effectiveness, it is important to eval-
uate the educational value of mutation analysis. In particular, how
useful is mutation analysis to undergraduate CS students? How
does the type or number of mutation operators affect students’
ability to react to feedback? What level of programming expertise
do students need to benefit from mutation-based feedback? As a
preliminary step toward this effort, we held 9 interviews with
third-year undergraduate CS students, who indicated that they
found feedback based on mutation analysis to be useful and
actionable. They were able to construct specific test cases that
would detect mutants generated from their own code. Further
work is needed to determine the degree to which mutation
feedback is useful to CS students and the best way in which to
present feedback.

10. Threats to validity
10.1. Internal validity

Running time distributions may have been affected by differ-
ences in the proportion of timed-out mutants between submis-
sion groups. In particular, the increase in median running times
over SG1, SG2, and SG3 (8 s, 12 s, and 44 s, respectively) were
more pronounced than the increase in running times from SG3 to
SG4 (44 s to 53 s). Further investigation revealed that submissions
in SG3 (specifically, those submitted to Project 5 in the CS 3
corpus) contained an atypically high percentage of mutants that
timed out. This drove up the median running time for mutation
analysis for the submission group. We could not identify a sys-
tematic cause. However, we do not believe this to be a serious
threat to the overall validity of our findings; we used two cost
measures for corroboration (mutant count, running time) as rec-
ommended by Guizzo et al. (2020), and our choice and ordering
of operators are not affected by the higher-than-expected median
running time for SG3.

AM. Kazerouni, J.C. Davis, A. Basak et al.
10.2. External validity

As with any research on software, our results are only as
general as the students and programs we study. We have striven
to mitigate this threat, by studying (1) a corpus of 1389 pro-
grams of various sizes and complexities, implementing 7 re-
quirement specifications, and (2) a smaller corpus of randomly
chosen codebases from real-world projects and the mutation
testing literature. That our findings from both datasets are largely
in agreement suggests that these results may be free of this
particular threat. That said, for reasons described in Section 5, we
studied only Java programs. It is possible that our findings do not
generalize to other programming languages or mutation tools. For
example, in Java bytecode, characters (char) are represented as
integers, while in other languages (like Python), they are not. As a
result, for similar operations in the two languages (e.g., assigning
a character to a variable), different mutation operators would be
used.

10.3. Construct validity

We studied PIT, a mature mutation testing tool available for
Java. As described in Section 5, it is currently the most robust,
easy-to-use, and practical mutation testing tool for the JVM, mak-
ing it the most practical choice for fast feedback based on muta-
tion analysis. Nevertheless, we do not use any direct measures of
test adequacy here, such as defect-detection capability. Instead,
we use coverage on the FULL set of PIT operators as a proxy for
measuring test quality, relying on existing theoretical (DeMillo
et al,, 1978; Offutt and Voas, 1996) and empirical (Offutt, 1992;
Andrews et al., 2005; Just et al., 2011) results on the validity and
strength of mutation analysis. We are encouraged by the fact that
Shams performed an assessment of deletion mutators in terms
of measuring test suite bug detection ability and found them to
be more effective than code coverage measures, but these results
still depend on the validity of the relationship between mutation
analysis and test quality.

11. Conclusion

The pedagogy of software testing is hindered by widespread
reliance on weak test adequacy criteria for the purposes of as-
sessment and feedback. Mutation analysis has been proposed as
an alternative solution, but its computational cost is a significant
limiting factor. We have devised a cost-effective mutation strat-
egy to produce fast, accurate, and incremental feedback on the
quality of student-written software tests. This approach provides
a better assessment of how well software tests check expected
behaviors, and can be used to generate feedback for students.
We improved upon the most efficient mutation operator set
previously proposed in the literature, the DELETION set. For the
projects we studied, the RemoveConditionals and AOD operators
produced results comparable to the most stringent set of op-
erators at 1/10th the cost of comprehensive mutation, and less
than half the cost of deletion mutation. These cost savings will
enable the use of mutation analysis in the automated assessment
tools frequently used in computer science courses. Future work
will evaluate the efficacy of mutation analysis as a feedback
mechanism in the classroom.

CRediT authorship contribution statement

Ayaan M. Kazerouni: Conceptualization, Methodology, Soft-
ware, Validation, Formal analysis, Investigation, Data curation,
Writing - original draft, Writing - review & editing, Visualiza-
tion. James C. Davis: Conceptualization, Methodology, Formal

16

The Journal of Systems & Software 175 (2021) 110905

analysis, Writing - original draft, Writing - review & editing, Vi-
sualization. Arinjoy Basak: Data curation, Software, Investigation,
Writing- review & editing. Clifford A. Shaffer: Conceptualization,
Methodology, Resources, Writing - original draft, Writing - review
& editing, Supervision, Funding acquisition. Francisco Servant:
Conceptualization, Writing - original draft, Writing - review &
editing, Visualization, Supervision. Stephen H. Edwards: Concep-
tualization, Methodology, Investigation, Resources, Data curation,
Writing - original draft, Writing - review & editing, Visualization,
Supervision, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

We are grateful to the National Science Foundation, United
States of America for their support under grants DUE-1625425
and DLR-1740765. We thank the anonymous peer reviewers
whose feedback improved this paper.

References

Aaltonen, K., Thantola, P., Seppdld, 0., 2010. Mutation analysis vs. Code coverage
in automated assessment of students’ testing skills. In: Proceedings of the
ACM International Conference Companion on Object Oriented Programming
Systems Languages and Applications Companion. In: OOPSLA '10, ACM, New
York, NY, USA, pp. 153-160. http://dx.doi.org/10.1145/1869542.1869567,
URL: http://doi.acm.org/10.1145/1869542.1869567.

Ammann, P., Offutt, J., 2008. Introduction to Software Testing, first ed. Cambridge
University Press, USA.

Andrews, J.H., Briand, L.C., Labiche, Y., 2005. Is mutation an appropriate tool for
testing experiments?. In: Proceedings of the 27th International Conference
on Software Engineering. In: ICSE '05, ACM, New York, NY, USA, pp. 402-
411. http://dx.doi.org/10.1145/1062455.1062530, URL: http://doi.acm.org/10.
1145/1062455.1062530.

Aniche, M., Hermans, F., van Deursen, A., 2019. Pragmatic software testing edu-
cation. In: Proceedings of the 50th ACM Technical Symposium on Computer
Science Education. In: SIGCSE '19, ACM, New York, NY, USA, pp. 414-
420. http://dx.doi.org/10.1145/3287324.3287461, URL: http://doi.acm.org/10.
1145/3287324.3287461.

Azevedo, R, Bernard, RM., 1995. A meta-analysis of the effects of feedback in
computer-based instruction. J. Educ. Comput. Res. 13 (2), 111-127. http://dx.
doi.org/10.2190/9LMD-3U28-3A0G-FTQT, URL: http://journals.sagepub.com/
doi/10.2190/9LMD-3U28-3A0G-FTQT.

Black, P., Wiliam, D., 1998. Assessment and classroom learning. Assess. Educ.:
Princ. Policy Pract. 5 (1), 7-74. http://dx.doi.org/10.1080/0969595980050102.

Bozdogan, H., 1987. Model selection and akaike’s information criterion (AIC): The
general theory and its analytical extensions. Psychometrika 52 (3), 345-370.

Budd, T.A., Angluin, D., 1982. Two notions of correctness and their relation to
testing. Acta Inform. 18 (1), 31-45. http://dx.doi.org/10.1007/BF00625279.

Buffardi, K., Valdivia, P., Rogers, D., 2019. Measuring unit test accuracy. In:
Proceedings of the 50th ACM Technical Symposium on Computer Science
Education. In: SIGCSE 19, ACM, New York, NY, USA, pp. 578-584. http://dx.
doi.org/10.1145/3287324.3287351, URL: http://doi.acm.org/10.1145/3287324.
3287351.

Carver, J., Kraft, N.A,, 2011. Evaluating the testing ability of senior-level computer
science students. In: 2011 24th IEEE-CS Conference on Software Engineering
Education and Training (CSEE T). pp. 169-178. http://dx.doi.org/10.1109/
CSEET.2011.5876084.

Coles, H., Laurent, T., Henard, C., Papadakis, M., Ventresque, A., 2016. PIT: A
practical mutation testing tool for java (demo). In: Proceedings of the 25th
International Symposium on Software Testing and Analysis. In: ISSTA 2016,
ACM, New York, NY, USA, pp. 449-452. http://dx.doi.org/10.1145/2931037.
2948707, URL: http://doi.acm.org/10.1145/2931037.2948707.

Delahaye, M., du Bousquet, L., 2013. A comparison of mutation analysis tools for
java. In: 2013 13th International Conference on Quality Software. IEEE, pp.
187-195. http://dx.doi.org/10.1109/QSIC.2013.47.

Delamaro, M., Offutt,], Ammann, P., 2014. Designing deletion mutation oper-
ators. In: 2014 IEEE Seventh International Conference on Software Testing,
Verification and Validation. IEEE, pp. 11-20. http://dx.doi.org/10.1109/ICST.
2014.12.

http://dx.doi.org/10.1145/1869542.1869567
http://doi.acm.org/10.1145/1869542.1869567
http://refhub.elsevier.com/S0164-1212(21)00002-9/sb2
http://refhub.elsevier.com/S0164-1212(21)00002-9/sb2
http://refhub.elsevier.com/S0164-1212(21)00002-9/sb2
http://dx.doi.org/10.1145/1062455.1062530
http://doi.acm.org/10.1145/1062455.1062530
http://doi.acm.org/10.1145/1062455.1062530
http://doi.acm.org/10.1145/1062455.1062530
http://dx.doi.org/10.1145/3287324.3287461
http://doi.acm.org/10.1145/3287324.3287461
http://doi.acm.org/10.1145/3287324.3287461
http://doi.acm.org/10.1145/3287324.3287461
http://dx.doi.org/10.2190/9LMD-3U28-3A0G-FTQT
http://dx.doi.org/10.2190/9LMD-3U28-3A0G-FTQT
http://dx.doi.org/10.2190/9LMD-3U28-3A0G-FTQT
http://journals.sagepub.com/doi/10.2190/9LMD-3U28-3A0G-FTQT
http://journals.sagepub.com/doi/10.2190/9LMD-3U28-3A0G-FTQT
http://journals.sagepub.com/doi/10.2190/9LMD-3U28-3A0G-FTQT
http://dx.doi.org/10.1080/0969595980050102
http://refhub.elsevier.com/S0164-1212(21)00002-9/sb7
http://refhub.elsevier.com/S0164-1212(21)00002-9/sb7
http://refhub.elsevier.com/S0164-1212(21)00002-9/sb7
http://dx.doi.org/10.1007/BF00625279
http://dx.doi.org/10.1145/3287324.3287351
http://dx.doi.org/10.1145/3287324.3287351
http://dx.doi.org/10.1145/3287324.3287351
http://doi.acm.org/10.1145/3287324.3287351
http://doi.acm.org/10.1145/3287324.3287351
http://doi.acm.org/10.1145/3287324.3287351
http://dx.doi.org/10.1109/CSEET.2011.5876084
http://dx.doi.org/10.1109/CSEET.2011.5876084
http://dx.doi.org/10.1109/CSEET.2011.5876084
http://dx.doi.org/10.1145/2931037.2948707
http://dx.doi.org/10.1145/2931037.2948707
http://dx.doi.org/10.1145/2931037.2948707
http://doi.acm.org/10.1145/2931037.2948707
http://dx.doi.org/10.1109/QSIC.2013.47
http://dx.doi.org/10.1109/ICST.2014.12
http://dx.doi.org/10.1109/ICST.2014.12
http://dx.doi.org/10.1109/ICST.2014.12

AM. Kazerouni, J.C. Davis, A. Basak et al.

DeMillo, R, Guindi, D.S.,, McCracken, W.M,, Offutt, AJ., King, KN. 1988.
An extended overview of the mothra software testing environment. In:
[1988] Proceedings. Second Workshop on Software Testing, Verification, and
Analysis. IEEE, pp. 142-151. http://dx.doi.org/10.1109/WST.1988.5369.

DeMillo, R, Lipton, RJ., Sayward, F.G., 1978. Hints on test data selection: Help
for the practicing programmer. Computer 11 (4), 34-41. http://dx.doi.org/10.
1109/C-M.1978.218136.

Deng, L., Offutt, J., Li, N., 2013. Empirical evaluation of the statement deletion
mutation operator. In: 2013 IEEE Sixth International Conference on Software
Testing, Verification and Validation. IEEE, pp. 84-93. http://dx.doi.org/10.
1109/ICST.2013.20.

Dereziriska, A., 2016. Evaluation of deletion mutation operators in mutation
testing of c# programs. In: Zamojski, W., Mazurkiewicz, J., Sugier,].,
Walkowiak, T., Kacprzyk,]. (Eds.), Dependability Engineering and Complex
Systems. Springer International Publishing, Cham, pp. 97-108.

Edwards, S.H., 2004. Using software testing to move students from trial-and-
error to reflection-in-action. SIGCSE Bull. 36 (1), 26-30. http://dx.doi.org/10.
1145/1028174.971312.

Edwards, S.H., Shams, Z., 2014. Comparing test quality measures for assessing
student-written tests. In: Companion Proceedings of the 36th International
Conference on Software Engineering. In: ICSE Companion 2014, ACM, New
York, NY, USA, pp. 354-363. http://dx.doi.org/10.1145/2591062.2591164,
URL: http://doi.acm.org/10.1145/2591062.2591164.

Edwards, S.H., Shams, Z., Cogswell, M., Senkbeil, R.C., 2012. Running students’
software tests against each others’ code: New life for an old "gimmick". In:
Proceedings of the 43rd ACM Technical Symposium on Computer Science
Education. In: SIGCSE 12, ACM, New York, NY, USA, pp. 221-226. http://dx.
doi.org/10.1145/2157136.2157202, URL: http://doi.acm.org/10.1145/2157136.
2157202.

Edwards, S.H., Snyder,]J., Pérez-Quifiones, M.A., Allevato, A., Kim, D., Tretola, B.,
2009. Comparing effective and ineffective behaviors of student program-
mers. In: Proceedings of the Fifth International Workshop on Computing
Education Research Workshop. In: ICER '09, ACM, New York, NY, USA, pp. 3-
14. http://dx.doi.org/10.1145/1584322.1584325, URL: http://doi.acm.org/10.
1145/1584322.1584325.

Goldwasser, M.H., 2002. A gimmick to integrate software testing throughout
the curriculum. In: Proceedings of the 33rd SIGCSE Technical Symposium on
Computer Science Education. In: SIGCSE 02, ACM, New York, NY, USA, pp.
271-275. http://dx.doi.org/10.1145/563340.563446, URL: http://doi.acm.org/
10.1145/563340.563446.

Goodenough, J., Gerhart, S.L, 1975. Toward a theory of test data selection.
IEEE Trans. Softw. Eng. SE-1 (2), 156-173. http://dx.doi.org/10.1109/TSE.1975.
6312836.

Gopinath, R., Ahmed, 1., Alipour, M.A,, Jensen, C., Groce, A., 2017. Does choice
of mutation tool matter?. Softw. Qual. J. 25 (3), 871-920. http://dx.doi.org/
10.1007/s11219-016-9317-7, URL: http://link.springer.com/10.1007/s11219-
016-9317-7.

Guizzo, G., Sarro, F., Harman, M., 2020. Cost measures matter for mutation
testing study validity. In: Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering. In: ESEC/FSE 2020, Association for Computing
Machinery, New York, NY, USA, pp. 1127-1139. http://dx.doi.org/10.1145/
3368089.3409742.

Inozemtseva, L., Holmes, R., 2014. Coverage is not strongly correlated with test
suite effectiveness. In: Proceedings of the 36th International Conference on
Software Engineering. In: ICSE 2014, ACM, New York, NY, USA, pp. 435-
445, http://dx.doi.org/10.1145/2568225.2568271, URL: http://doi.acm.org/10.
1145/2568225.2568271.

Ivankovié¢, M., Petrovi¢, G., Just, R, Fraser, G., 2019. Code coverage at google.
In: Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering. In: ESEC/FSE 2019, ACM, New York, NY, USA, pp. 955-
963. http://dx.doi.org/10.1145/3338906.3340459, URL: http://doi.acm.org/10.
1145/3338906.3340459.

Jackson, D., Usher, M., 1997. Grading student programs using ASSYST. In:
Proceedings of the Twenty-Eighth SIGCSE Technical Symposium on Com-
puter Science Education. In: SIGCSE '97, ACM, New York, NY, USA, pp.
335-339. http://dx.doi.org/10.1145/268084.268210, URL: http://doi.acm.org/
10.1145/268084.268210.

Jenks, G.F., 1967. The data model concept in statistical mapping. Int. Yearb.
Cartogr. 7, 186-190.

Jenks, G., 1977. Optimal Data Classification for Choropleth Maps Occasional Paper
No 2. University of Kansas, Department of Geography.

Jia, Y., Harman, M., 2011. An analysis and survey of the development of mutation
testing. IEEE Trans. Softw. Eng. 37 (5), 649-678. http://dx.doi.org/10.1109/
TSE.2010.62.

Jones, E.L., 2000. Software testing in the computer science curriculum - a holistic
approach. In: Proceedings of the Australasian Conference on Computing
Education - ACSE '00. ACM Press, New York, New York, USA, pp. 153-157.
http://dx.doi.org/10.1145/359369.359392, URL: http://portal.acm.org/citation.
cfm?doid=359369.359392.

17

The Journal of Systems & Software 175 (2021) 110905

Just, R, Jalali, D., Inozemtseva, L., Ernst, M.D., Holmes, R., Fraser, G., 2014. Are
mutants a valid substitute for real faults in software testing?. In: Proceedings
of the 22Nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering. In: FSE 2014, ACM, New York, NY, USA, pp. 654-
665. http://dx.doi.org/10.1145/2635868.2635929, URL: http://doi.acm.org/10.
1145/2635868.2635929.

Just, R, Schweiggert, F., Kapfhammer, G.M., 2011. MAJOR: An efficient and
extensible tool for mutation analysis in a java compiler. In: 2011 26th
IEEE/ACM International Conference on Automated Software Engineering (ASE
2011). pp. 612-615. http://dx.doi.org/10.1109/ASE.2011.6100138.

Kazerouni, A.M., Edwards, S.H., Shaffer, C.A., 2017. Quantifying incremental de-
velopment practices and their relationship to procrastination. In: Proceedings
of the 2017 ACM Conference on International Computing Education Research.
In: ICER ’17, Association for Computing Machinery, New York, NY, USA, pp.
191-199. http://dx.doi.org/10.1145/3105726.3106180.

Kazerouni, A.M., Shaffer, C.A., Edwards, S.H., Servant, F., 2019. Assessing in-
cremental testing practices and their impact on project outcomes. In:
Proceedings of the 50th ACM Technical Symposium on Computer Science
Education. In: SIGCSE '19, Association for Computing Machinery, New York,
NY, USA, pp. 407-413. http://dx.doi.org/10.1145/3287324.3287366.

King, KN., Offutt, AJ., 1991. A fortran language system for mutation-based
software testing. Softw. Pract. Exper. 21 (7), 685-718. http://dx.doi.org/10.
1002/spe.4380210704.

Kintis, M., Papadakis, M., Papadopoulos, A., Valvis, E., Malevris, N., 2016.
Analysing and comparing the effectiveness of mutation testing tools: A
manual study. In: 2016 IEEE 16th International Working Conference on
Source Code Analysis and Manipulation (SCAM). pp. 147-156. http://dx.doi.
org/10.1109/SCAM.2016.28.

Kintis, M., Papadakis, M., Papadopoulos, A., Valvis, E., Malevris, N., Le Traon, Y.,
2018. How effective are mutation testing tools? An empirical analysis of java
mutation testing tools with manual analysis and real faults. Empir. Softw.
Eng. 23 (4), 2426-2463. http://dx.doi.org/10.1007/s10664-017-9582-5.

der Kleij, FM.V., Feskens, RCW., Eggen, TJ.H.M., 2015. Effects of feedback in
a computer-based learning environment on students’ learning outcomes:
A meta-analysis. Rev. Educ. Res. 85 (4), 475-511. http://dx.doi.org/10.3102/
0034654314564881.

Laurent, T., Papadakis, M., Kintis, M., Henard, C., Traon, Y.L, Ventresque, A., 2017.
2017 IEEE International Conference on Software Testing, Verification and
Validation (ICST). pp. 430-435. http://dx.doi.org/10.1109/ICST.2017.47.

Lethbridge, T.C., 2000. Priorities for the education and training of soft-
ware engineers. J. Syst. Softw. 53 (1), 53-71. http://dx.doi.org/10.1016/
S0164-1212(00)00009-1, URL: http://www.sciencedirect.com/science/article/
pii/S0164121200000091.

Lloyd, S., 1982. Least squares quantization in PCM. IEEE Trans. Inform. Theory
28 (2), 129-137. http://dx.doi.org/10.1109/TIT.1982.1056489.

Ma, Y.-S., Offutt, J., Kwon, Y.R, 2005. Mujava: an automated class mutation
system. Softw. Test. Verif. Reliab. 15 (2), 97-133. http://dx.doi.org/10.1002/
stvr.308.

Mathur, A., 1991. Performance, effectiveness, and reliability issues in software
testing. In: [1991] Proceedings the Fifteenth Annual International Computer
Software Applications Conference. pp. 604-605. http://dx.doi.org/10.1109/
CMPSAC.1991.170248.

Myers, GJ., Sandler, C., Badgett, T., 2011. The Art of Software Testing. John Wiley
& Sons.

Offutt, AJ., 1992. Investigations of the software testing coupling effect. ACM
Trans. Softw. Eng. Methodol. 1 (1), 5-20. http://dx.doi.org/10.1145/125489.
125473.

Offutt, AJ., Lee, A., Rothermel, G., Untch, RH., Zapf, C., 1996. An experimental de-
termination of sufficient mutant operators. ACM Trans. Softw. Eng. Methodol.
5 (2), 99-118. http://dx.doi.org/10.1145/227607.227610, URL: http://doi.acm.
org/10.1145/227607.227610.

Offutt, AJ., Voas, .M., 1996. Subsumption of Condition Coverage Techniques by
Mutation Testing. Tech. Rep. ISSE-TR-96-100, Department of Information and
Software Systems Engineering, George Mason University.

Papancea, A., Spacco, J., Hovemeyer, D., 2013. An open platform for managing
short programming exercises. In: Proceedings of the Ninth Annual Interna-
tional ACM Conference on International Computing Education Research. In:
ICER '13, ACM, New York, NY, USA, pp. 47-52. http://dx.doi.org/10.1145/
2493394.2493401, URL: http://doi.acm.org/10.1145/2493394.2493401.

Pettit, R., Homer,]J., Gee, R., Mengel, S., Starbuck, A., 2015. An empirical study of
iterative improvement in programming assignments. In: Proceedings of the
46th ACM Technical Symposium on Computer Science Education. In: SIGCSE
’15, Association for Computing Machinery, New York, NY, USA, pp. 410-415.
http://dx.doi.org/10.1145/2676723.2677279.

Pettit, R., Prather,]., 2017. Automated assessment tools: Too many cooks, not
enough collaboration. J. Comput. Sci. Coll. 32 (4), 113-121, URL: http://dl.
acm.org/citation.cfm?id=3055338.3079060.

Politz,].G., Krishnamurthi, S., Fisler, K., 2014. In-flow peer-review of tests in
test-first programming. In: Proceedings of the Tenth Annual Conference on
International Computing Education Research. In: ICER '14, Association for
Computing Machinery, New York, NY, USA, pp. 11-18. http://dx.doi.org/10.
1145/2632320.2632347.

http://dx.doi.org/10.1109/WST.1988.5369
http://dx.doi.org/10.1109/C-M.1978.218136
http://dx.doi.org/10.1109/C-M.1978.218136
http://dx.doi.org/10.1109/C-M.1978.218136
http://dx.doi.org/10.1109/ICST.2013.20
http://dx.doi.org/10.1109/ICST.2013.20
http://dx.doi.org/10.1109/ICST.2013.20
http://refhub.elsevier.com/S0164-1212(21)00002-9/sb17
http://refhub.elsevier.com/S0164-1212(21)00002-9/sb17
http://refhub.elsevier.com/S0164-1212(21)00002-9/sb17
http://refhub.elsevier.com/S0164-1212(21)00002-9/sb17
http://refhub.elsevier.com/S0164-1212(21)00002-9/sb17
http://refhub.elsevier.com/S0164-1212(21)00002-9/sb17
http://refhub.elsevier.com/S0164-1212(21)00002-9/sb17
http://dx.doi.org/10.1145/1028174.971312
http://dx.doi.org/10.1145/1028174.971312
http://dx.doi.org/10.1145/1028174.971312
http://dx.doi.org/10.1145/2591062.2591164
http://doi.acm.org/10.1145/2591062.2591164
http://dx.doi.org/10.1145/2157136.2157202
http://dx.doi.org/10.1145/2157136.2157202
http://dx.doi.org/10.1145/2157136.2157202
http://doi.acm.org/10.1145/2157136.2157202
http://doi.acm.org/10.1145/2157136.2157202
http://doi.acm.org/10.1145/2157136.2157202
http://dx.doi.org/10.1145/1584322.1584325
http://doi.acm.org/10.1145/1584322.1584325
http://doi.acm.org/10.1145/1584322.1584325
http://doi.acm.org/10.1145/1584322.1584325
http://dx.doi.org/10.1145/563340.563446
http://doi.acm.org/10.1145/563340.563446
http://doi.acm.org/10.1145/563340.563446
http://doi.acm.org/10.1145/563340.563446
http://dx.doi.org/10.1109/TSE.1975.6312836
http://dx.doi.org/10.1109/TSE.1975.6312836
http://dx.doi.org/10.1109/TSE.1975.6312836
http://dx.doi.org/10.1007/s11219-016-9317-7
http://dx.doi.org/10.1007/s11219-016-9317-7
http://dx.doi.org/10.1007/s11219-016-9317-7
http://link.springer.com/10.1007/s11219-016-9317-7
http://link.springer.com/10.1007/s11219-016-9317-7
http://link.springer.com/10.1007/s11219-016-9317-7
http://dx.doi.org/10.1145/3368089.3409742
http://dx.doi.org/10.1145/3368089.3409742
http://dx.doi.org/10.1145/3368089.3409742
http://dx.doi.org/10.1145/2568225.2568271
http://doi.acm.org/10.1145/2568225.2568271
http://doi.acm.org/10.1145/2568225.2568271
http://doi.acm.org/10.1145/2568225.2568271
http://dx.doi.org/10.1145/3338906.3340459
http://doi.acm.org/10.1145/3338906.3340459
http://doi.acm.org/10.1145/3338906.3340459
http://doi.acm.org/10.1145/3338906.3340459
http://dx.doi.org/10.1145/268084.268210
http://doi.acm.org/10.1145/268084.268210
http://doi.acm.org/10.1145/268084.268210
http://doi.acm.org/10.1145/268084.268210
http://refhub.elsevier.com/S0164-1212(21)00002-9/sb29
http://refhub.elsevier.com/S0164-1212(21)00002-9/sb29
http://refhub.elsevier.com/S0164-1212(21)00002-9/sb29
http://refhub.elsevier.com/S0164-1212(21)00002-9/sb30
http://refhub.elsevier.com/S0164-1212(21)00002-9/sb30
http://refhub.elsevier.com/S0164-1212(21)00002-9/sb30
http://dx.doi.org/10.1109/TSE.2010.62
http://dx.doi.org/10.1109/TSE.2010.62
http://dx.doi.org/10.1109/TSE.2010.62
http://dx.doi.org/10.1145/359369.359392
http://portal.acm.org/citation.cfm?doid=359369.359392
http://portal.acm.org/citation.cfm?doid=359369.359392
http://portal.acm.org/citation.cfm?doid=359369.359392
http://dx.doi.org/10.1145/2635868.2635929
http://doi.acm.org/10.1145/2635868.2635929
http://doi.acm.org/10.1145/2635868.2635929
http://doi.acm.org/10.1145/2635868.2635929
http://dx.doi.org/10.1109/ASE.2011.6100138
http://dx.doi.org/10.1145/3105726.3106180
http://dx.doi.org/10.1145/3287324.3287366
http://dx.doi.org/10.1002/spe.4380210704
http://dx.doi.org/10.1002/spe.4380210704
http://dx.doi.org/10.1002/spe.4380210704
http://dx.doi.org/10.1109/SCAM.2016.28
http://dx.doi.org/10.1109/SCAM.2016.28
http://dx.doi.org/10.1109/SCAM.2016.28
http://dx.doi.org/10.1007/s10664-017-9582-5
http://dx.doi.org/10.3102/0034654314564881
http://dx.doi.org/10.3102/0034654314564881
http://dx.doi.org/10.3102/0034654314564881
http://dx.doi.org/10.1109/ICST.2017.47
http://dx.doi.org/10.1016/S0164-1212(00)00009-1
http://dx.doi.org/10.1016/S0164-1212(00)00009-1
http://dx.doi.org/10.1016/S0164-1212(00)00009-1
http://www.sciencedirect.com/science/article/pii/S0164121200000091
http://www.sciencedirect.com/science/article/pii/S0164121200000091
http://www.sciencedirect.com/science/article/pii/S0164121200000091
http://dx.doi.org/10.1109/TIT.1982.1056489
http://dx.doi.org/10.1002/stvr.308
http://dx.doi.org/10.1002/stvr.308
http://dx.doi.org/10.1002/stvr.308
http://dx.doi.org/10.1109/CMPSAC.1991.170248
http://dx.doi.org/10.1109/CMPSAC.1991.170248
http://dx.doi.org/10.1109/CMPSAC.1991.170248
http://refhub.elsevier.com/S0164-1212(21)00002-9/sb46
http://refhub.elsevier.com/S0164-1212(21)00002-9/sb46
http://refhub.elsevier.com/S0164-1212(21)00002-9/sb46
http://dx.doi.org/10.1145/125489.125473
http://dx.doi.org/10.1145/125489.125473
http://dx.doi.org/10.1145/125489.125473
http://dx.doi.org/10.1145/227607.227610
http://doi.acm.org/10.1145/227607.227610
http://doi.acm.org/10.1145/227607.227610
http://doi.acm.org/10.1145/227607.227610
http://refhub.elsevier.com/S0164-1212(21)00002-9/sb49
http://refhub.elsevier.com/S0164-1212(21)00002-9/sb49
http://refhub.elsevier.com/S0164-1212(21)00002-9/sb49
http://refhub.elsevier.com/S0164-1212(21)00002-9/sb49
http://refhub.elsevier.com/S0164-1212(21)00002-9/sb49
http://dx.doi.org/10.1145/2493394.2493401
http://dx.doi.org/10.1145/2493394.2493401
http://dx.doi.org/10.1145/2493394.2493401
http://doi.acm.org/10.1145/2493394.2493401
http://dx.doi.org/10.1145/2676723.2677279
http://dl.acm.org/citation.cfm?id=3055338.3079060
http://dl.acm.org/citation.cfm?id=3055338.3079060
http://dl.acm.org/citation.cfm?id=3055338.3079060
http://dx.doi.org/10.1145/2632320.2632347
http://dx.doi.org/10.1145/2632320.2632347
http://dx.doi.org/10.1145/2632320.2632347

AM. Kazerouni, J.C. Davis, A. Basak et al.

Radermacher, A., Walia, G., 2013. Gaps between industry expectations and the
abilities of graduates. In: Proceeding of the 44th ACM Technical Symposium
on Computer Science Education. In: SIGCSE '13, Association for Computing
Machinery, New York, NY, USA, pp. 525-530. http://dx.doi.org/10.1145/
2445196.2445351.

Schuler, D., Zeller, A., 2009. Javalanche: Efficient mutation testing for java. In:
Proceedings of the 7th Joint Meeting of the European Software Engineer-
ing Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering. In: ESEC/FSE '09, ACM, New York, NY, USA, pp. 297-
298. http://dx.doi.org/10.1145/1595696.1595750, URL: http://doi.acm.org/10.
1145/1595696.1595750.

Schwarz, G., 1978. Estimating the dimension of a model. Ann. Statist. 6 (2),
461-464. http://dx.doi.org/10.1214/aos/1176344136.

Seabold, S., Perktold, J., 2010. Statsmodels: Econometric and statistical modeling
with python. In: 9th Python in Science Conference.

Shams, Z., 2015. Automated Assessment of Student-written Tests Based on
Defect-detection Capability (Ph.D. thesis). Virginia Tech, Blacksburg, VA, URL:
http://hdl.handle.net/10919/52024.

Shams, Z., Edwards, S.H., 2013. Toward practical mutation analysis for evaluating
the quality of student-written software tests. In: Proceedings of the Ninth
Annual International ACM Conference on International Computing Education
Research. In: ICER 13, ACM, New York, NY, USA, pp. 53-58. http://dx.
doi.org/10.1145/2493394.2493402, URL: http://doi.acm.org/10.1145/2493394.
2493402.

Siami Namin, A., Andrews, J.H., Murdoch, D.J., 2008. Sufficient mutation operators
for measuring test effectiveness. In: Proceedings of the 30th International
Conference on Software Engineering. In: ICSE '08, ACM, New York, NY,
USA, pp. 351-360. http://dx.doi.org/10.1145/1368088.1368136, URL: http:
//doi.acm.org/10.1145/1368088.1368136.

Spacco, J., Hovemeyer, D., Pugh, W., Emad, F., Hollingsworth,].K., Padua-Perez, N.,
2006. Experiences with marmoset: Designing and using an advanced sub-
mission and testing system for programming courses. In: Proceedings of
the 11th Annual SIGCSE Conference on Innovation and Technology in
Computer Science Education. In: ITICSE '06, ACM, New York, NY, USA, pp.
13-17. http://dx.doi.org/10.1145/1140124.1140131, URL: http://doi.acm.org/
10.1145/1140124.1140131.

Spacco, J., Pugh, W., 2006. Helping students appreciate test-driven development
(TDD). In: Companion to the 21st ACM SIGPLAN Symposium on Object-
Oriented Programming Systems, Languages, and Applications. In: OOPSLA '06,
ACM, New York, NY, USA, pp. 907-913. http://dx.doi.org/10.1145/1176617.
1176743.

Untch, RH., 2009. On reduced neighborhood mutation analysis using a single
mutagenic operator. In: Proceedings of the 47th Annual Southeast Regional
Conference. In: ACM-SE 47, ACM, New York, NY, USA, pp. 71:1-71:4. http:
//dx.doi.org/10.1145/1566445.1566540.

Wang, T, Su, X, Ma, P, Wang, Y., Wang, K, 2011. Ability-training-oriented
automated assessment in introductory programming course. Comput. Educ.
56 (1), 220-226. http://dx.doi.org/10.1016/j.compedu.2010.08.003.

Wong, W.E., Mathur, A.P., 1995. Fault detection effectiveness of mutation and
data flow testing. Softw. Qual. J. 4 (1), 69-83. http://dx.doi.org/10.1007/
BF00404650, URL: http://link.springer.com/10.1007/BF00404650.

Wrenn, J., Krishnamurthi, S., 2019. Executable examples for programming
problem comprehension. In: Proceedings of the 2019 ACM Conference on In-
ternational Computing Education Research. In: ICER '19, ACM, New York, NY,
USA, pp. 131-139. http://dx.doi.org/10.1145/3291279.3339416, URL: http:
//doi.acm.org/10.1145/3291279.3339416.

Wrenn, J., Krishnamurthi, S., Fisler, K., 2018. Who tests the testers?. In: Pro-
ceedings of the 2018 ACM Conference on International Computing Education
Research. In: ICER 18, ACM, New York, NY, USA, pp. 51-59. http://dx.
doi.org/10.1145/3230977.3230999, URL: http://doi.acm.org/10.1145/3230977.
3230999.

18

The Journal of Systems & Software 175 (2021) 110905

Yao, X., Harman, M,, Jia, Y., 2014. A study of equivalent and stubborn mutation
operators using human analysis of equivalence. In: Proceedings of the 36th
International Conference on Software Engineering - ICSE 2014. ACM Press,
Hyderabad, India, pp. 919-930. http://dx.doi.org/10.1145/2568225.2568265,
URL: http://dl.acm.org/citation.cfm?doid=2568225.2568265.

Ayaan M. Kazerouni is an Assistant Professor in the Department of Computer
Science and Software Engineering at California Polytechnic State University. He
is interested in computing education and software engineering with a focus
in self-regulated software development and software testing. Ayaan obtained
a Ph.D. in Computer Science at Virginia Tech in 2020, and a BS in Computer
Science at the University of West Georgia in 2015. Find him on the web at
https://ayaankazerouni.github.io/.

James C. Davis is an Assistant Professor in the department of Electrical and
Computer Engineering at Purdue University. He received his Ph.D. from Virginia
Tech. His research focuses on improving the correctness, security, and overall
quality of computer systems. His work identifies best practices and common
errors through qualitative and quantitative empirical methods. Find him on the
web at https://davisjam.github.io/.

Arinjoy Basak is a Ph.D. student working with Dr. Clifford A. Shaffer at the
Department of Computer Science, Virginia Tech. He earned his B.E. in Computer
Science from IIEST Shibpur in Howrah, India in 2016, and his M.S. in Computer
Science from Virginia Tech in 2019. His interests include educational data mining
and analyzing student behaviors. His thesis focuses on building interactive
tutorial systems for understanding mathematical problem-solving behaviors of
students in undergraduate engineering mechanics courses. Find him on the web
at https://arinjoy-basak.github.io/.

Clifford A. Shaffer is Professor and Associate Department Head in the Depart-
ment of Computer Science at Virginia Tech. He received his Ph.D. from the
University of Maryland, and is an ACM Distinguished Educator. His current
research promotes online technologies for learning. He directs the OpenDSA
project, an open-source, online collection of materials and infrastructure for
creating eTextbooks on Computer Science topics. He also studies integration of
online educational tools, and developing tools for analyzing learner analytics.
Find him on the web at https://people.cs.vt.edu/shaffer.

Francisco Servant is Assistant Professor in the Department of Computer Science
at Virginia Tech. He received a Ph.D. in Software Engineering from the University
of California, Irvine, and a B.S. in Computer Science from the University of
Granada, Spain. His research focuses on software development productivity and
software quality. Find him on the web at https://fservant.com/.

Stephen H. Edwards is a Professor and the Associate Department Head for
Undergraduate Studies in the Department of Computer Science at Virginia
Tech, where he has been teaching since 1996. He received his B.S. in elec-
trical engineering from Caltech, and M.S. and Ph.D. degrees in computer and
information science from The Ohio State University. His research interests
are in computer science education, software engineering, automated testing,
the use of formal methods in programming languages, and component-based
approaches to software engineering and reuse. Find him on the web at https:
|/people.cs.vt.edu/edwards.

http://dx.doi.org/10.1145/2445196.2445351
http://dx.doi.org/10.1145/2445196.2445351
http://dx.doi.org/10.1145/2445196.2445351
http://dx.doi.org/10.1145/1595696.1595750
http://doi.acm.org/10.1145/1595696.1595750
http://doi.acm.org/10.1145/1595696.1595750
http://doi.acm.org/10.1145/1595696.1595750
http://dx.doi.org/10.1214/aos/1176344136
http://refhub.elsevier.com/S0164-1212(21)00002-9/sb57
http://refhub.elsevier.com/S0164-1212(21)00002-9/sb57
http://refhub.elsevier.com/S0164-1212(21)00002-9/sb57
http://hdl.handle.net/10919/52024
http://dx.doi.org/10.1145/2493394.2493402
http://dx.doi.org/10.1145/2493394.2493402
http://dx.doi.org/10.1145/2493394.2493402
http://doi.acm.org/10.1145/2493394.2493402
http://doi.acm.org/10.1145/2493394.2493402
http://doi.acm.org/10.1145/2493394.2493402
http://dx.doi.org/10.1145/1368088.1368136
http://doi.acm.org/10.1145/1368088.1368136
http://doi.acm.org/10.1145/1368088.1368136
http://doi.acm.org/10.1145/1368088.1368136
http://dx.doi.org/10.1145/1140124.1140131
http://doi.acm.org/10.1145/1140124.1140131
http://doi.acm.org/10.1145/1140124.1140131
http://doi.acm.org/10.1145/1140124.1140131
http://dx.doi.org/10.1145/1176617.1176743
http://dx.doi.org/10.1145/1176617.1176743
http://dx.doi.org/10.1145/1176617.1176743
http://dx.doi.org/10.1145/1566445.1566540
http://dx.doi.org/10.1145/1566445.1566540
http://dx.doi.org/10.1145/1566445.1566540
http://dx.doi.org/10.1016/j.compedu.2010.08.003
http://dx.doi.org/10.1007/BF00404650
http://dx.doi.org/10.1007/BF00404650
http://dx.doi.org/10.1007/BF00404650
http://link.springer.com/10.1007/BF00404650
http://dx.doi.org/10.1145/3291279.3339416
http://doi.acm.org/10.1145/3291279.3339416
http://doi.acm.org/10.1145/3291279.3339416
http://doi.acm.org/10.1145/3291279.3339416
http://dx.doi.org/10.1145/3230977.3230999
http://dx.doi.org/10.1145/3230977.3230999
http://dx.doi.org/10.1145/3230977.3230999
http://doi.acm.org/10.1145/3230977.3230999
http://doi.acm.org/10.1145/3230977.3230999
http://doi.acm.org/10.1145/3230977.3230999
http://dx.doi.org/10.1145/2568225.2568265
http://dl.acm.org/citation.cfm?doid=2568225.2568265
https://ayaankazerouni.github.io/
https://davisjam.github.io/
https://arinjoy-basak.github.io/
https://people.cs.vt.edu/shaffer
https://fservant.com/
https://people.cs.vt.edu/edwards
https://people.cs.vt.edu/edwards
https://people.cs.vt.edu/edwards

	Fast and accurate incremental feedback for students' software tests using selective mutation analysis
	Introduction
	Background and related work
	Desirable properties for student test assessment
	Existing measures of student test quality
	Reducing the cost of mutation analysis
	Mutation analysis in education
	Mutation analysis tools for Java

	Goals and constraints
	Research questions
	Motivational study: Evaluating existing selective mutation approaches for use in an AAT
	Core study: Proposing new mutation approaches that are viable for use in an AAT
	Validation study: Evaluating proposed mutation approaches using an unrelated dataset

	Study context
	Project corpuses under test
	Language and tooling
	Data preparation
	Measuring the cost of a selective mutation approach

	Motivational study: Evaluating existing approaches
	RQ1. How efficient is comprehensive mutation analysis at providing automated feedback on test suites?
	Method
	Result

	RQ2. Are existing selective mutation approaches cost-effective alternatives to comprehensive mutation?
	Method
	Result

	Core study: Proposing new approaches
	RQ3: Can the cost of mutation by deletion be reduced further while maintaining effectiveness?
	Method
	Result

	RQ4: How do the benefits of different mutation strategies vary by project size?
	Method
	Result

	Validation study
	RQ5: How do our proposed mutation strategies perform in terms of cost-effectiveness against a separate validation dataset?
	Method
	Result

	Discussion
	Choosing a subset of operators
	Operationalizing feedback
	Future directions

	Threats to validity
	Internal validity
	External validity
	Construct validity

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

