
Exploring the Bug Investigation Techniques of Intermediate
Student Programmers

Rifat Sabbir Mansur
rifatsm@vt.edu
Virginia Tech

Blacksburg, Virginia

Ayaan M. Kazerouni∗
ayaank@calpoly.edu

California Polytechnic State University
San Luis Obispo, California

Stephen H. Edwards
edwards@cs.vt.edu

Virginia Tech
Blacksburg, Virginia

Clifford A. Shaffer
shaffer@vt.edu
Virginia Tech

Blacksburg, Virginia

ABSTRACT
Bug investigation – testing and debugging – is a significant part
of software development. Ineffective practices of bug investigation
can greatly hinder project development. Therefore, we seek to
understand bug investigation practices among intermediate student
programmers. To this end, we used a mixed-methods approach to
study the testing and debugging practices of students in a junior-
level Data Structures course with 3–4 week long projects. First, we
interviewed 12 students of varying project performances. From the
interviews, we identified five techniques that students use for both
testing and debugging: 1) writing diagnostic print statements, 2)
unit testing, 3) using source-level debugger, 4) submission to online
auto-grader, and 5) manual tracing. Using the Grounded Theory
approach, we developed four hypotheses regarding students’ use
of multiple techniques and their possible impact on performance.
We used clickstream data to analyze the level of use of the first four
of these techniques. We found that over 92%, 87%, and 73% of the
students used JUnit testing, diagnostic print statements, and the
source-level debugger, respectively. We found that the majority of
the students (91%) used more than one technique to investigate bugs
in their projects. Moreover, students who used multiple techniques
had overall better performance in the projects. Finally, we identified
some ineffective practices correlated with lower project scores.
We believe that the findings of our research will help understand,
characterize, and teach better practices of bug investigation.

CCS CONCEPTS
• Social and professional topics→ Computing education; • Soft-
ware and its engineering → Software development process man-
agement; Software testing and debugging.

∗Some work performed while at Virginia Tech.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Koli Calling ’20, November 19–22, 2020, Koli, Finland
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8921-1/20/11. . . $15.00
https://doi.org/10.1145/3428029.3428040

KEYWORDS
CS education, bug investigation, testing, debugging, post-CS2, data
structures and algorithms
ACM Reference Format:
Rifat Sabbir Mansur, Ayaan M. Kazerouni, Stephen H. Edwards, and Clifford
A. Shaffer. 2020. Exploring the Bug Investigation Techniques of Intermediate
Student Programmers. In Koli Calling ’20: Proceedings of the 20th Koli Calling
International Conference on Computing Education Research (Koli Calling ’20),
November 19–22, 2020, Koli, Finland. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3428029.3428040

1 INTRODUCTION
Debugging, testing, and verification are essential steps in software
development. These three steps can take up to 75% of the total devel-
opment cost [12]. Imperfect debugging and testing practice affects
the total time spent on a given software development effort [22].
Therefore, it is essential for computer science (CS) students to learn
the best practices for debugging, testing, and verification. This
is even more true when developing large and complex software
projects. Most CS students learn about these software development
practices as early as the CS1 and CS2 courses. However, some stu-
dents struggle with debugging and testing even after successfully
completing CS1- and CS2-level courses. These imperfect practices
in debugging and testing can greatly hinder the performance of the
students in later CS courses, and in their professional life. Results
of these difficulties may be manifesting in the post-CS2 Data Struc-
tures course at our university, where 25–30% of students drop out
or achieve lower than a C grade each semester. In our research, we
aim to explore the different techniques used by student program-
mers for finding and fixing bugs in a post-CS2 Data Structures and
Algorithms course (what we refer to as “CS3”).

Most studies on student testing and debugging practices are di-
rected toward students who are just learning to program, in their
first or second programming courses. For our research, we are in-
terested in the practices of more advanced students. These students
have passed their first year programming courses and are attempt-
ing to write and debug programs that are longer and have more
complex structure and interactions. We focus on a junior-level Data
Structures and Algorithms course. These students must complete
four programming assignments written in Java with lifecycles of
3–4 weeks. In contrast to our CS1 and CS2 courses, these assign-
ments have less scaffolding in place to help the students. While

https://doi.org/10.1145/3428029.3428040
https://doi.org/10.1145/3428029.3428040

Koli Calling ’20, November 19–22, 2020, Koli, Finland Rifat Sabbir, et al.

they are given a large amount of detailed verbal and written advice
about design and implementation during the course of the project,
these students need to design their own solutions. The students
then need to write accurate solution code along with their own test
cases for locally verifying their solution code. An online auto-grader
is then used to assess the correctness of students’ solution code. The
auto-grader also evaluates the code coverage of the student-written
test cases. In case of a faulty solution code, students need to iden-
tify bugs and fix them using one or more debugging techniques of
their choice. In many ways, their experience level and behavior are
more like that of professional programmers than that of CS1/CS2
students.

We hypothesize that these students use different techniques
for their testing and debugging. This depends on an individual
student’s prior knowledge, ability, and/or personal preferences.
The course requires students to write their own JUnit test cases,
but it is possible to use other techniques to test one’s solution code.
Nearly all of these students use the Eclipse IDE. Eclipse provides
an environment for writing solution code along with JUnit tests,
and a source-level debugger. We knew from prior experience that
many students use console print statements to check code flow and
variable values as a form of testing and debugging. We also believe
that there can be additional techniques that students use for testing
and debugging their code.

Our research goal is to understand the different bug investigation
techniques used by intermediate-level students, and measure the
effectiveness of such techniques in large programming assignments.
We define bug investigation to be the holistic process of identifying
the existence of one or more bugs in the solution code and fixing
them. The process can consist of multiple iterations of testing and
debugging.

We used a mixed-methods approach to get a better understand-
ing of how students carry out their bug investigation. First, we
conducted semi-structured interviews with 12 students from the
course for qualitative analysis, with these students selected to rep-
resent a range of previous performance. Based on the interviews,
we learned about different techniques that the students use for
bug investigation. Second, we conducted an online survey on two
semesters for the same course, to observe if our findings from the
interviews reflected wider population. Finally, we collected empiri-
cal data about the different techniques that these students used to
complete their projects. We hypothesize that students use testing
and debugging closely as a part of a bigger process, bug investi-
gation, to identify and fix bugs. We ran a thorough analysis on
the collected data to find the extent to which our hypotheses were
supported.

In our paper, we address the following research questions.
(1) What are the different techniques that the students use for

bug investigation?
(2) How is the use of each bug investigation technique dis-

tributed among the student population?
(3) What is the relationship between different bug investigation

techniques and project outcomes, like project correctness,
and time taken?

By analyzing both qualitative and quantitative data, we aim to
better characterize the bug investigation process practiced by these
students.

Structure of the paper. In Section 2, we present relatedwork on
debugging techniques and strategies. We present our methodology
in Section 3 and the corresponding analysis in Section 4. We discuss
our results in Section 5 and consider possible threats to validity in
Section 6.

2 RELATEDWORK
Prior research has attempted to understand the various bug investi-
gation techniques used by students [1, 5, 9, 11, 16, 22]. The literature
ranges from studies conducted on small assignments done by small
numbers of students to studies of large project assignments done by
hundreds of students. The majority of these works focus on novice
student programmers who are in an early stage of learning to write
code, write test cases, and perform debugging in small assignments
like those found in CS1/CS2 courses. In contrast, our work focuses
on students who have an intermediate level of programming knowl-
edge and expertise, and their process of finding and solving bugs
in larger, more complex programming assignments. This requires
a more complex analysis of the different testing and debugging
practices exhibited by the students.

Murphy, et al. [16] conducted a qualitative analysis of different
debugging techniques used by novice-level Java programmers. They
categorized these techniques into a list of strategies. They then
distinguished the strategies as good, bad, or quirky based on their
effectiveness, productivity, and student’s performance. Murphy, et
al. also presented teaching guidelines that can help novice students
learn and apply different debugging techniques effectively.

Gugerty and Olson [11] report two experiments to distinguish
the debugging practices and strategies used by expert and novice
programmers. In their first experiment, they compared sixteen first
or second level students enrolled in an introductory Pascal course
(novices) against eight advanced CS graduate students (experts). In
their second experiment, they compared ten introductory under-
graduate students against ten CS graduate students. Surprisingly,
they found that both the novices and the experts used the same
debugging techniques and strategies. They found that the experts
showed superior performance by better understanding the code
base before making any edits. The experts were also much faster in
code comprehension compared to the novices. Finally, the experts
were careful not to add additional bugs while looking for an exist-
ing bug. However, novices often accidentally introduced new bugs
during their debugging process.

Ahmadzadeh, et al. [1] studied debugging patterns in students
taking an introductory Java programming course. The authors
considered students from two groups, 1) good programmers - who
obtained more than 70% overall marks in the semester, and 2) weak
programmers - who obtained less than 40% overall marks. The
authors then designed an experiment where the students were
asked to find and fix certain bugs (compiler and logical errors)
in an author-written program within a fixed amount of time (120
minutes). Based on their performance in the experiment, the authors
further categorized these students into 1) good debuggers, and 2)
weak debuggers. The authors found that most of the good debuggers
were good programmers. However, the opposite is not true, as
less than half of the good programmers were found to be good
debuggers. The authors posited that good debuggers have a separate

Exploring the Bug Investigation Techniques of Intermediate Student Programmers Koli Calling ’20, November 19–22, 2020, Koli, Finland

skill set from good programmers. They have a sound understanding
of the code implementation and the bug. The authors measured
this skill set by two factors: 1) the relevance of the changes made
during the debugging process, and 2) their ability to isolate the bug.
Thus, Ahmadzadeh, et al. found that otherwise good programmers,
who lacked an understanding of the implementation of someone
else’s code, were unable to debug the code successfully. Students in
a study by Katz, et al. [13] used different techniques for debugging
and their choice of techniques varied based on whether they were
debugging on their own code or other students’ code.

There has been research to understand the debugging mindset
and strategies among programmers [3, 5, 10, 17, 18, 20, 22, 23].
Nagy, et al. [17] found that student programmers follow a repetitive
cycle upon finding a bug in their code. They follow the cycle of
making small changes, resubmitting the code, and hoping the code
works properly. Araki, et al. [3] suggested a set of initial hypothe-
ses from which the programmers select one hypothesis at a time
until they can verify the correct hypothesis behind a particular bug.
More recently, Zeller, et al. [23] proposed a seven step approach for
systematic debugging called TRAFFIC. The approach contains all
the steps of debugging starting from the discovery of a bug to the
ultimate fix for the bug. Chmiel and Loui [5] developed a model
of debugging abilities and habits. This is based on the five stages
of the Dreyfus model of skill acquisition [6], such as novice, ad-
vanced beginner, competent, proficient, and expert. This study [5]
was conducted on students taking a sophomore-level assembly pro-
gramming course, which means a typical student would have pre-
viously taken one or two programming courses. The authors found
that novice debuggers frequently generate the same type of bugs
by repeating the same types of mistakes. Such students spend too
much time debugging using their preferred debugging technique.
In contrast, competent debuggers feel comfortable using a variety
of debugging techniques. Although there are several techniques
for debugging, there is not a single, perfect set of debugging tech-
niques for everyone [22]. Chmiel and Loui [5] found that learning
multiple debugging techniques could enhance a student’s overall
debugging skill. In our research, we focus on intermediate student
programmers who are more likely to use multiple techniques.

Recent work [4, 19] investigates why programmers use differ-
ent debugging tools. In both studies, researchers found the IDE’s
source-level debugger and diagnostic print statements to be the
most common debugging tools among professional programmers.
Beller, et al. [4] found that 81.3%, 72.2%, and 71.6% of 176 profes-
sional programmers use a source level debugger, log files, and print
statements, respectively. Perscheid, et al. [19] conducted an online
survey of both professional and student programmers. According to
the survey, student programmers, unlike professional programmers,
tend to use print statements more than source level debuggers. In
this research paper, we explore the extent to which the student
programmers use different testing and debugging techniques.

3 METHODOLOGY
We collected data on student bug investigation practices using
a mixed-methods approach. First, we conducted semi-structured
interviews based on our prior knowledge and intuition of how

students practice testing and debugging during their course assign-
ments. Then, we used findings from the interviews to drive larger-
scale quantitative analysis of usage logs from students’ Eclipse IDEs
and their submissions to the Web-CAT auto-grader tool. In this sec-
tion we describe the data collection tasks. We present our findings
in Section 4.

3.1 Interviews with Students
3.1.1 Study Subjects. We conducted a total of 12 interviews. The
interviewees were from three different sections of the CS3-level
Data Structures and Algorithms course in Fall 2019, taught by two
instructors. The three sections were taught in the same semester
and the course materials, schedules, and evaluation criteria were
identical for each section. The interviews were conducted after
the students had completed their first project of the course. Due
to scheduling, two of the twelve interviews were conducted after
the completion of the second project. The students had a range of
performance on the first project. Seven of the students received
a score of 100 on their first project. The remaining five students
scored less than 90 in their first project. The median score on this
project was 92.7. Students were free to work with a partner or not,
as they chose. Six of the interviewees completed the project by
themselves, while the other six students did it with a partner.

3.1.2 Study Design. The interviews consisted of 60minute sessions
with 20 questions. Some of the topics in the questionnaire are as
follows.

(1) How difficult was the project? What were the new concepts
learned?

(2) What bug investigation techniques were used for testing and
debugging? What was their primary technique for testing
and debugging?

(3) When was the first time they used bug investigation tech-
niques?

(4) Did they use multiple bug investigation techniques?
(5) What were the drivers for choosing between multiple bug

investigation techniques?
(6) How did they use the bug investigation techniques?
(7) Reflection on different bug investigation techniques.
(8) What were the difficulties that they faced regarding bug

investigation?

The questions were used as a starting point for discussing dif-
ferent topics about the interviewee’s bug investigation practices.
The interviewees were asked to share examples as appropriate to
answer each of the questions. They were also encouraged to add
information, reflection, or experiences that they felt were relevant.

We conducted the interviews with the help of two authors of
this paper. One of the authors transcribed the answers as another
author guided the discussion with the interviewee. After the end of
interviews, each interviewee was compensated with a $15 Amazon
gift card for their time. We used Grounded Theory [21] to analyze
the interviews. We manually coded the contents of the twelve
interview transcripts. Then we clustered similar codes into concept
groups, and further clustered the concept groups into categories.

According to our findings, students mainly used the following
five bug investigation techniques.

Koli Calling ’20, November 19–22, 2020, Koli, Finland Rifat Sabbir, et al.

Table 1: The number of students using a single or a combi-
nation of bug investigation techniques.

Different Techniques As Primary Tool At Least Once
DPS 7 12

JUnit Testing 2 5
Debugger 2 4
Web-CAT 1 4

Manual Tracing 0 3
DPS + Debugger 1 4

DPS + JUnit + Debugger 1 4

(1) Diagnostic Print Statements (DPS)
(2) JUnit Testing
(3) IDE Debugger
(4) Web-CAT Submission
(5) Manual Tracing

Table 1 shows the number of interviewees who mentioned using
either one or a combination of multiple bug investigation tech-
niques. The most popular technique was Diagnostic Print State-
ments (DPS). A DPS is a temporary printed output that a student
uses for testing and/or debugging. According to our interviews,
all twelve interviewees used DPS to some extent. Seven students
stated that DPS was their primary tool for bug investigation.

The second most popular tool of choice was JUnit testing. Stu-
dents were required to write JUnit tests since they were graded
in part on how well their JUnit test suite performed on code cov-
erage metrics. Five of the interviewees mentioned that they used
JUnit testing to some extent for testing their solution code and to
localize a bug. Among these five students, two of them used JUnit
tests as their primary bug investigation technique. This technique
was considered more useful when working with a partner. Two of
the students mentioned that they wrote JUnit tests to verify the
correctness of code that was written by their project partner.

We noticed that the four interviewees, who used more than
one bug investigation techniques, were among the high scoring
students. Chmiel and Loui [5] found that competent debuggers
use multiple debugging techniques effectively by alternating them.
The four interviewees who mentioned using source-level debugger
all had prior experience with the debugger from their earlier CS
courses, unlike the rest of the interviewees. In agreement to Chmiel
and Loui [5], we found that students using multiple techniques
have additional skill set.

Web-CAT is not generally considered to be a testing or debugging
tool. It is an automatic grading system that instructors use to eval-
uate student performance on programming projects, by calculating
the correctness of their solutions, evaluating student-written test
cases using code coverage, and assessing documentation and other
aspects of programming style. There was no limit to the number of
times a student could submit toWeb-CAT. Some students attempted
to debug their solution code by submitting to Web-CAT, making
changes, and then resubmitting multiple times until Web-CAT ver-
ified that the grader test cases passed. Four of our interviewees
mentioned using Web-CAT to verify their solution code. Three of
them mostly used it for cases where the output format of their

Figure 1: From our online survey: percentage of students us-
ing different bug investigation techniques.

program did not meet the assignment requirements. Only one in-
terviewee mentioned that they used Web-CAT as a primary bug
investigation technique.

Students also reported that they found bugs by manually tracing
through their code. Three of our interviewees mentioned they used
manual tracing, but not as their primary tool. According to one
interviewee:

“[Manual Tracing]...with my partner helped me figure out the
logical flaw in our code.”

Some students reported using a combination of techniques. Ac-
cording to these interviewees, they used different techniques for
different purposes. For example, JUnit testing might be used to
determine the existence of a bug, DPS for finding the bug’s location,
and the IDE’s source-level debugger for uncovering faulty program
logic.

During our interviews, all of the interviewees mentioned that
they faced some level of difficulties with bug investigation. Themost
common difficulty faced (7 out of 12) was localizing the bug. Five
of the interviewees believed that the difficulties they faced could
be solved by improving their debugging strategies and practices.
For example:

“Probably more practice [could help].”
“Try something else instead of trying the same thing over and

over again and expecting different results.”
“More time, more incremental development, more test cases,

probably using debugger could help.”
Therefore, based on Xie and Yang [22], we believe that a good

portion of the student programmers suffer from ineffective practices
for bug investigation, and that they can be improved upon.

3.2 Online Survey
Analysis of the interviews lead us to the following hypotheses.

(1) H1. The majority of the students use DPS.
(2) H2. Students use a combination of multiple techniques for

bug investigation.
(3) H3. Students who use multiple techniques tend to perform

better.
(4) H4. Some students use ineffective practices for bug investi-

gation.

Exploring the Bug Investigation Techniques of Intermediate Student Programmers Koli Calling ’20, November 19–22, 2020, Koli, Finland

We wanted to see if our findings from the interviews reflected
the behavior of a wider population. In order to test this, we designed
an online survey.

3.2.1 Study Subjects. We tailored our survey questions towards
students in the same CS3-level Data Structures and Algorithms
course. We conducted our online survey during two course of-
ferings, Spring 2020 and Summer 2020. The spring semester was
16 weeks long, whereas, the summer semester was 6 weeks long.
For Spring 2020, there were two sections, taught by two different
instructors. The course was conducted in person for half of the
semester, then moved online for the rest of the semester due to
the COVID-19 pandemic. There were a total of 247 students in
two sections for the Spring 2020 semester. The course materials,
project specification, and exams were the same for both sections.
For Summer 2020, the course was offered fully online from the
start to a total of 41 students. This course was a combined course
consisting of both undergraduate (38) and graduate (3) students.
The course was taught by a different instructor from Spring 2020
semester. Having said that, the course contents and the projects
were similar to the ones taught in Spring 2020 and Fall 2019.

We received a total of 47 responses from Spring 2020 semes-
ter and a total of 20 responses from the Summer 2020 semester.
Participation in the survey was voluntary and there was no com-
pensation for participation. The survey responses were recorded
anonymously. Responses were recorded from unique IP addresses
to make sure one participator filled up the survey only once.

3.2.2 Study Design. The survey was designed to be answered using
any browser or phone and took 5 to 10 minutes to complete. The
average time for the survey participation was approximately 6
minutes. We asked various questions regarding bug investigation,
such as what debugging techniques were used, which techniques
were found to be the most useful, and which techniques were the
easiest to use.

Our survey results were consistent with the findings from our
interviews. Based on our 67 responses, we found that the majority
of participants, 87%, used DPS. This supports our first hypothesis,
H1, that the majority of the students use DPS for bug investigation.
The other techniques — such as JUnit testing, IDE’s source-level
debugger, Web-CAT submission, and manual tracing — were used
by 85%, 73%, 65%, and 50%, respectively. 96% of the participants
indicated that they used a combination of DPS, JUnit test cases, IDE
debugger, and/or the Web-CAT auto-grader. This supports our sec-
ond hypothesis, H2, that the students use a combination of multiple
techniques for bug investigation. Furthermore, we found that 81%,
73%, and 50% of the participants found DPS, JUnit testing, and IDE
debugger, respectively, to be useful debugging tools. Only 12% of
the participants found Web-CAT to be useful as a bug investigation
tool.

Since writing JUnit test cases were required by the course, we
wanted to find howmany of the students believe they would use JU-
nit testing if it were not required. 50% of the participants agreed that
they would write JUnit test cases even if it were not required. 31%
of the participants disagreed, and 19% of the participants neither
agreed nor disagreed. We also found that 84% of the participants
used JUnit testing for actual testing and/or debugging purposes

(not just for the course requirement). Finally, we found that a ma-
jority of the participants, 62%, found finding the bug to be the most
difficult part of bug investigation, compared to fixing the bug (50%
participants).

3.3 Analysis of Development Process Data
3.3.1 Web-CAT Online Auto-grader Data. For this research, we
collected data from three sections of the CS3-level Data Struc-
tures and Algorithms course. We analyzed all of the submissions
made towards Web-CAT. Each submission was graded automati-
cally against the instructors’ hidden reference tests. We also au-
tomatically graded the quality of student test cases as measured
by their code coverage, and automatically graded commenting and
related style issues. TAs manually graded projects on adherence
to the design requirements. The overall project score is calculated
by weighted summation of these metrics. For our research, we are
most interested in the project correctness score which is the cor-
rectness of student code measured by instructors’ reference tests.
This can be viewed as a summative assessment of the whole design,
implementation, testing, and debugging process.

3.3.2 Event-level data via the DevEventTracker Plugin. To analyze
students’ incremental development process and their detailed bug
investigation behavior, we collected students’ development data
using DevEventTracker [14]. This Eclipse plugin collects students’
development events from their local machine. Students are recom-
mended to use the plugin for this course and are asked for their
consent for using their development data anonymously. We only
included the data from the students who provided consent. We
collected over 6 million development events via DevEventTracker.
DevEventTracker records timestamped event data, such as adding,
removing, and editing of solution code and test code, save events,
etc. It tracks launch event data, such as normal launch events, debug-
ger launch events, and JUnit test launch events. Specific debugger
event data is tracked, such as setting breakpoints, step into, step
over, etc.

3.3.3 Code Snapshot Repository Data. To analyze bug investigation
techniques inside solution code, we used the DevEventTracker
plugin to collect code snapshots of the solution code and the test
cases throughout the students’ development process. These code
snapshots contain all the temporary lines of code that students
write during their project development. From this collection of
code snapshots, we were able to identify DPS. We developed a rule-
based classifier to distinguish DPS from print statements required
by the assignment (non-DPS). Our classifier identifies a statement
as a DPS using the following rules:

(1) A DPS cannot be an empty statement, for example,
’System.out.println()’, or whitespace, for example,
’System.out.print("\n")’.

(2) A DPS cannot appear in the final submission.
(3) It is not a DPS if it is required by the assignment specification.
If the criteria above are met, then we can classify the statement

as a potential DPS.
We devised a program based on the open-source Java package

RepoDriller [2] that drilled through the code snapshots of all the
projects. We then used the rules above to identify the DPS in a

Koli Calling ’20, November 19–22, 2020, Koli, Finland Rifat Sabbir, et al.

given student project. We noted both the insertion and removal of
a DPS. The removal of a DPS can be done by commenting the print
statement or by deleting it. Then, we counted the number of DPS
for each project to calculate the extent to which a student uses DPS.

To check the effectiveness of our rule-based DPS classifier, we
conducted a preliminary experiment. We randomly selected three
submission sets for each of the four project assignments over the
entire semester. Therefore, we had a set of 12 project submission
sets. We gathered all the print statements from our 12 sample sub-
mission sets as described above, collecting a total of 1,467 print
statements from the 12 project histories (mean = 122 and s.d = 89).
One of the authors of this paper then manually classified DPS from
the total 1,467 print statements. We ran our rule-based DPS clas-
sifier separately on the same print statement collection, and then
compared the two classifications. Our automated classifier correctly
identified all 611 DPS, indicating that it could be reliably used on
the entire corpus of project histories.

For our final step, we processed the three data collections to
make them compatible. We had project scores for all the students
from the Web-CAT system. However, using the DevEventTracker
plugin was voluntary, and was used by 58% of students. Since our
analyses require data that are common across all three collections,
we only considered students who had used the DevEventTracker
plugin.

We investigated the difference in project scores between the
four projects. We considered the project scores of the students who
used the DevEventTracker plugin. We ran a Kruskal–Wallis test on
the project scores across all four projects. We found no significant
difference between the project scores (p−value = 0.085). Therefore,
we used data from all four projects.

4 ANALYSIS
In this section, we report on an analysis of the three data collec-
tions, aimed at understanding the bug investigation techniques
used by intermediate student programmers. Our Web-CAT sub-
mission collection includes submissions from 222 students. All of
these students submitted at least once for Project 1. However, only
184 students submitted at least once for Project 2, a drop by 17%.
Project 3 was submitted at least once by 182 students, and finally,
Project 4 was submitted by 175 students. This is a total drop over
the course of the semester of 21% from Project 1. 1

We notice that there were 38 students who dropped the course
after the end of Project 1. 35 of these 38 students used neither the
DevEventTracker plugin nor the Git snapshots. Therefore, we had
no access to the incremental development data of the majority of
the dropped out students. Upon inspection we found, as expected,
that the project scores were significantly lower among the dropped
students. The mean project correctness score among the dropped
students was 58% — which is significantly lower than the mean of
the rest of the class, 84%, with a p < 0.0001.

Figure 2 shows the overall performance on the programming
projects of all the students over the semester. We can see that, while
overall the scores are good, there are several students who struggle
compared to the rest of the class.

1This suggests that a fair number of students struggle to stay in the course or perform
satisfactorily.

Figure 2: Box plots of the score distribution for each project.
The box shows the 75th and 25th percentiles.

Table 2: Different bug investigation techniques and the per-
centage of students using them across all the four projects.
⋆ = 1 user.

Different Used by Mean Median Standard
Techniques students Score Score Deviation

No Technique 2% 72 95 44.92
DPS (alone) 4% 65 79 36.38
JUnit (alone) 3% 81 90 35.59

Debugger (alone) 0%⋆ 93 93 0
DPS 18% 72 84 32.68

+JUnit Testing
DPS 2% 64 78 38

+ Debugger
JUnit 8% 79 91 32.83

+ Debugger
DPS 63% 78 90 28.79

+ JUnit
+ Debugger

To understand students’ testing and debugging practices, we
analyzed our collected data to count the number of students us-
ing the different bug investigation techniques during their project
development process. We focused on the techniques — DPS, JUnit
testing, and IDE debugger — that were measurable in our data. From
the code snapshot data, we found that 87% of the students used
DPS to some extent in their projects, as shown in Table 2. We also
found that 92% of the students used JUnit testing and 73% of the
students used IDE debugger. This contradicts our hypothesis, H1,
which was based on the interview and survey results. So, for our
first hypothesis, H1, we found that the majority of the students use
JUnit testing, closely followed by DPS.

We also found that there are students who use multiple tech-
niques for bug investigation during their project development pro-
cess. From Table 2, we can see that 91% of the students used more
than one technique for bug investigation. Similarly, 63% of the stu-
dents used a combination of all three techniques — i.e., DPS, JUnit
testing, and IDE debugger — in their projects. This supports our
second hypothesis, H2.

In support of our third hypothesis H3, we found that students
who used multiple debugging techniques over the course of a

Exploring the Bug Investigation Techniques of Intermediate Student Programmers Koli Calling ’20, November 19–22, 2020, Koli, Finland

Figure 3: Boxplots of project score for students using (1)Mul-
tiple Debugging Techniques (any combination of DPS, JUnit,
andDebugger), and (2) SingleDebuggingTechnique (any one
of DPS/JUnit/Debugger). Students using a combination of
multiple debugging techniques tend to have a higher project
score then students using single debugging technique.

project performed better (in terms of correctness) than students
who only used a single debugging technique. Figure 3 depicts cor-
rectness score distributions for these two groups of students. On
the left are scores from students who used multiple debugging tech-
niques (n = 201), and on the right are scores from students who
only used a single debugging technique (n = 94). We used Welch’s
two sample t-test to check for differences in project scores between
the two groups. With p < 0.001, the test indicated that students
who used multiple debugging techniques produced projects with
higher correctness (mean = 84%, s.d = 28%) than students who
only used a single debugging technique (mean = 64%, s.d = 41%).
Note that it is possible for students to appear in both groups, e.g.,
if they used JUnit tests and DPS on Project 1 but then solely relied
on JUnit tests on Project 2. So we found that students who used
a combination of multiple bug investigation techniques tend to
perform better in the projects. Therefore, our third hypothesis, H3,
was supported.

We investigated if the project score is impacted by different bug
investigation practices. We did not find any correlation between
individual bug investigation techniques and project score. How-
ever, we found that students who use a combination of multiple
techniques — such as both JUnit testing and the IDE debugger in
their project — obtained higher mean correctness than the others.
From Table 2, we can see that 8% of the total students (77 out of 429)
use a combination of JUnit testing and IDE debugger as their bug
investigation practice. This group of students obtained a median
project score of 91% (s.d = 32.83). Furthermore, we can notice that
students using JUnit alone or in a combination of other techniques
tend to have median score of 90% or above. The exception to this
pattern is the group of students who used both DPS and JUnit test-
ing (median score 84). We can further observe that students using
DPS alone or in combination tend to have lower median scores.
The other two groups — no technique and IDE debugger alone
— that achieve a higher median score than 90% are very small in
number of students. Only 10 out of 429 students (2%) and only 1 out

Table 3: Three factor crossed ANOVA for examining the ef-
fect of different bug investigation techniques on the project
score correctness.

Df Sum Sq Mean Sq F-value p-value
DPS 1 388 388 0.407 0.524
JUnit 1 3402 3402 3.562 0.05
Debug 1 1155 1155 1.210 0.257

DPS:JUnit 1 391 391 0.410 0.800
DPS:Debug 1 176 176 0.185 0.964
JUnit:Debug 1 37 37 0.038 0.844

DPS:JUnit:Debug 1 577 577 0.604 0.437
Residuals 421 402076 955 N/A N/A

of 429 students (almost 0%) used no technique and IDE debugger
respectively. Therefore, we consider them as outliers.

To further understand the correlation between project score
correctness and different combinations of techniques, we ran a
three factor crossed ANOVA. The result can be seen at Table 3.
According to Table 3, we found JUnit testing alone to be the most
important factor to project score correctness. This is statistically
significant (p − value = 0.05). No other factor or interaction in
Table 3 significantly correlates to project score correctness.

Next, we investigated the relationship between bug investiga-
tion techniques and the total time spent on the project. Following
Kazerouni, et al. [15], we used DevEventTracker data to calculate
the total time spent interacting with the Eclipse IDE (as a proxy for
the total time spent “working on the project”). In agreement with
Fenwick, et al. [8], Edwards, et al. [7], and Kazerouni, et al. [15],
we found no correlation between project score and the number
of hours spent on the project. A three-factor analysis of variance
indicated that DPS usage (alone) and JUnit testing (alone) were
significantly positively related to total time spent on the project
(Table 4).

In order to understand practices of bug investigation outside the
IDE event-level data, we considered the number of times a student
submits to Web-CAT. We found that students who used more than
one bug investigation technique tended to complete their project
with fewer submissions to Web-CAT. We ran a three-factor cross
ANOVA on the effect of different techniques on the number of
Web-CAT submissions. We found sufficient evidence to suggest
that using only a single technique — DPS, JUnit, or IDE debugger
— correlates to a higher number of submissions to Web-CAT. This
suggests that the students practicing only a single technique tend
to rely on other means, such as submitting to Web-CAT, for testing
and debugging their solution.

A large number of Web-CAT submissions in a short period of
time could indicate that the student is using Web-CAT’s ability to
serve as an “oracle” as a bug investigation tool. In this case, a student
might use Web-CAT for testing purposes, i.e., to identify if there
is a bug in the code or if the code misses any edge cases. For this
reason, a student would make multiple unsuccessful submissions
to Web-CAT consecutively. In contrast, a low number of Web-CAT
submissions in a long period of time (assuming that they eventually
received a good correctness score) could indicate that a student
used other techniques for bug investigation. From Figure 4, we

Koli Calling ’20, November 19–22, 2020, Koli, Finland Rifat Sabbir, et al.

Table 4: Three factor crossed ANOVA for examining the ef-
fect of different bug investigation techniques on the hours
spent on each project.

Df Sum Sq Mean Sq F-value p-value
DPS 1 18853 18853 12.430 < 0.001
JUnit 1 20992 20992 13.841 < 0.001
Debug 1 1955 1955 1.289 0.257

DPS:JUnit 1 97 97 0.064 0.800
DPS:Debug 1 3 3 0.002 0.964
JUnit:Debug 1 377 377 0.249 0.618
Residuals 316 479260 1517 N/A N/A

can see that there is a positive correlation between the number of
Web-CAT submissions made and total time required to complete
the project (where p < 0.001; R2 = 17%).

To further extend this idea, we categorized the overall project
development process into two phases, 1) new code generation, and
2) bug investigation. New code generation occurs when a student
writes additional code to implement new functionality. Bug investi-
gation is when a student tries to find and fix one or more bugs in
the existing code with the help of different testing and debugging
techniques. The students are recommended to write their solution
code, test the new code by writing their own test cases, and then
submit to the Web-CAT auto-grader. However, some students write
new code and then submit directly to Web-CAT, bypassing the step
of testing with their own test cases. In such cases, students use
the Web-CAT auto-grader as a way to test their solution code, by
adopting a trial-and-error approach. This generally gives rise to
multiple submissions to the Web-CAT system with often little to
no improvement to the project correctness. We identify this behav-
ior as “stagnant Web-CAT submission” when multiple consecutive
Web-CAT submissions fail to improve the overall project score.

In our analysis, we found that students usemultiple techniques in
the bug investigation phase. We found the most common technique
to be launching the codewith the presence of one ormore diagnostic
print statements. The other common techniques are launching the
IDE’s source-level debugger and running the JUnit tests. We also
found some cases where the student submitted toWeb-CATwithout
using any of the above bug investigation techniques. We identify
these cases as using the Web-CAT auto-grader as a testing and/or
debugging tool. We found that submitting to Web-CAT without
using additional bug investigation techniques (DPS, IDE debugger,
and/or JUnit testing) tends to result in more “stagnant Web-CAT
submissions” (where p < 0.001; R2 = 68.25%). We also found that
projects with a higher number of “stagnant Web-CAT submissions”
took longer to complete (where p < 0.001; R2 = 30.72%). As a result,
we can conclude that relying on Web-CAT as a form of testing and
debugging could lead to more time spent on the overall project.
However, we found no evidence to correlate the project score with
the number of “stagnant Web-CAT submissions”.

We compared the influence of practicing single technique vs
multiple techniques by the same student. We found that students
used more techniques in the earlier two projects and settled in
using one or two techniques in the later two projects. For example,
73 and 85 students used a combination of all three techniques (DPS

Figure 4: Project activity time (in hours) vs the number of
total Web-CAT submissions for all four projects. There is a
significant positive relationship, where p < 0.001; R2 = 0.17.

+ JUnit + IDE debugger) in project 1 and 2 respectively. For project
3 and 4, this number got reduced to 56 students. There were 12
students who used all three techniques across all four projects. We
found no significant change in project score or project activity time
as students used fewer techniques in their development process.

Finally, to address our fourth hypothesis, H4, we can suggest
that submitting to Web-CAT without first doing local testing and
debugging is an ineffective practice for bug investigation.

5 DISCUSSION
Bug investigation, i.e., testing and debugging, is an integral part of
project development. This is especially true for a large and complex
project, such as the ones in the CS3-level course that we studied. Fur-
thermore, there are several effective ways to investigate bugs. Based
on the current literature, currently there is no underlying theory
that explores the bug investigation nature in intermediate student
programmers. Most of the current research regarding debugging is
focused on novice or professional programmers [1, 4, 5, 9, 16, 19].
In our research, we tried to explore different techniques that the
intermediate student programmers use for bug investigation. Based
on our qualitative study, we formulated four hypotheses. We then
used the students’ quantitative usage data to verify our initial hy-
potheses.

H1. The majority of the students use DPS.
Using DPS to test and debug is one of the simplest forms of bug

investigation. In addition to its simplicity, it is one of the fastest
and easiest techniques. In our interview studies, we found that
all of the students used DPS to some extent. Many attributed its
fast nature of adding/deleting print statements as the prime reason
for using it. Reviewing students’ code snapshots, we found that
over 87% of the students used DPS while developing their projects.
We found that even more students (92%) used JUnit testing. This
is because writing JUnit test cases were required in the project.
This, inherently, gave rise to more JUnit launches as students tested
their test cases. According to our online survey, only 84% of the
students use JUnit testing for testing and/or debugging purposes.
The remaining 16% of the students use it as a course requirement.
31% of the survey respondents also mentioned they would not use

Exploring the Bug Investigation Techniques of Intermediate Student Programmers Koli Calling ’20, November 19–22, 2020, Koli, Finland

Figure 5: Plot of number of total test launches vs project
score.

JUnit testing if it were not a course requirement. Therefore, we can
say that the majority of the students used DPS for bug investigation
purpose. This is congruent with the study conducted by Perscheid,
et al. [19].

H2. Students use a combination of multiple techniques for bug
investigation.

The projects for this course are relatively large and complex
in nature. Students are required to use new knowledge as well
their past experiences in programming. Additionally, since the stu-
dents are intermediate-level programmers, they tend to be advanced
beginners to expert in the Dreyfus model of skill acquisition [6].
Therefore, we can assume that intermediate students would uti-
lize multiple techniques to find and fix bugs in their code. We first
formulated this hypothesis from our interviews. We found 8 of 12
student interviewees used more than one technique. Two students
listed a combination of different techniques as their primary tool
of bug investigation. To further verify this hypothesis, we used stu-
dents’ usage data and found over 91% students used a combination
of DPS, JUnit testing, and IDE debugger. This proves that many
intermediate student programmers use a combination of multiple
techniques for bug investigation. This supports the findings of Katz,
et al. [13] and Chmiel and Loui [5], where they found that student
programmers use multiple and different debugging techniques.

H3. Students who use multiple techniques tend to perform better.
Beyond discovering what intermediate-level student program-

mers do, we also want to know if their bug investigation practices
have any influence in the overall project performance. We formu-
lated our third hypothesis to check if using multiple techniques has
an effect on project performance. We considered both project score
and project activity time as the metrics of performance. Since each
bug investigation technique requires additional skills, we can sug-
gest that students who used multiple techniques are more skilled
than students who used only a single technique. The data support
our third hypothesis, that the students who use multiple techniques
tend to perform better in project score and take less amount of hours
to complete the projects. This supports and extends the findings of
Chmiel and Loui [5] conducted on novice programmers.

We analyzed the project perfomance — score correctness and
activity time — against all the combinations of different bug inves-
tigation techniques. We found indications that the usage of JUnit
testing influence project performance. From Table 3, we can see
that using JUnit is the most important factor when it comes to
project score. We analyzed the effect of using JUnit test cases (alone
or in combination with other techniques) on project performance
as measured by project score. 2 From Figure 5, we can observe the
relation between project score and JUnit usage. The data points in
Figure 5 are color-coded to represent the different combinations of
bug investigation techniques. We found no significant correlation
between project score and different combination of JUnit usage.

We also found that the students, who use multiple techniques,
are also efficient in using local techniques — such as DPS, JUnit,
and IDE debugger — for localizing and fixing bugs, and verifying
their solution. The low number of submissions made to Web-CAT
supports this notion. On the contrary, students using only single
technique for bug investigation tend to rely on the auto-grader for
verifying their solution. From Figure 4, we can see that relying on
Web-CAT takes more time to complete the project. Hence, we can
suggest students, who use multiple techniques, tend to perform bet-
ter by effectively using the local techniques. This further supports
the results of Murphy, et al. [16] and Chmiel and Loui [5].

H4. Some students use ineffective practices for bug investigation.
We formulated this hypothesis based on the literature and our

interviews. We learned that students consider debugging to be one
of the hardest parts of programming. Students mentioned several
cases where they wished that they had done the bug investigation
differently. We investigated different practices among the students,
namely frequent Web-CAT submissions, frequent use of JUnit test
cases, and frequent use of the IDE’s source-level debugger. We
further investigated “stagnant Web-CAT submissions” and found
with significant evidence that it leads to longer time to complete
the projects. We suggest that the practice of frequently using Web-
CAT tends to make project progress slower. Therefore, extending
the bad debugging practices found by Murphy, et al. [16], we can
conclude that there exist students with ineffective practices for
bug investigation, namely, over-reliance on the auto-grader as an
“oracle” for correctness.

6 THREATS TO VALIDITY
We now consider some possible threats to the validity of our work.
One threat to our qualitative analysis is that we might not have
included a representative sample of student behaviors. For our
qualitative study, we interviewed 12 intermediate-level student pro-
grammers. We randomly selected 12 students from two sections of
the CS3 Data Structures and Algorithms course offered in the same
semester, Fall 2019. We found that the students were reasonably
distributed with respect to performance on the first project. Seven
of the twelve students scored 100 or higher in the first project. A
student can get 100 points for correctness, style, and design. The
class median score for the first project was 92.7. The remaining
five students struggled with their first project and scored below

2Here, the total JUnit usage is calculated by the number of times a student launched a
JUnit session in their Eclipse IDE.

Koli Calling ’20, November 19–22, 2020, Koli, Finland Rifat Sabbir, et al.

90. Therefore, we believe that we covered both high performing
students and low performing/struggling students in our interviews.

Another possibility is that our attention might be focused on
the wrong questions when we did our quantitative analysis. In
particular, we had choices on how we divided students into com-
parison groups. We began with the research literature to help us
formulate our underlying theory. However, we could not find any
underlying theory regarding bug investigation techniques in in-
termediate student programmers. Therefore, we based our initial
understanding from the research conducted on novice students.
Based on this, we prepared interview questions. We then conducted
our semi-structured interviews to formulate our hypotheses via
qualitative research methods. Finally, we verified our hypotheses
quantitatively using students’ event-level data, code snapshots, and
submission data. Therefore, we used mixed-research method to
solidify our results.

We conducted our online survey across two semesters, Spring
and Summer 2020. The Summer semester was shorter (6 weeks)
compared to the Spring semester (16 weeks). The Summer semester
required three projects, whereas the Spring semester required four.
The projects offered during each session had similar specifications
and difficulty. We conducted the online survey after the end of
Project 1 to avoid additional biases. Responses from each semester
resulted in similar findings.

We developed our understanding of “stagnant Web-CAT submis-
sions” based on literature review, prior preliminary research, and
student interviews. However, students may have various plausible
causes for these stagnant submissions. For example, students can
submit their incomplete solution code to Web-CAT for checking
how much partial credit they might get. These submissions are
more common shortly before the deadline and are not necessarily
for bug investigation purposes. Therefore, we focused on the stag-
nant Web-CAT submissions which are not right before the deadline.
This could be further researched by exploring the actual changes
made by the students in these submissions. We plan to explore this
in our future research.

7 CONCLUSION AND FUTUREWORK
In this paper, we explored different bug investigation techniques
in intermediate-level student programmers using mixed-research
methods. We used interviews to form our foundation in understand-
ing the techniques used by students for bug investigation in a post-
CS2 Data Structures and Algorithms course. We then used students’
event-level usage data to verify our understanding quantitatively.
We learned that students collectively used different techniques for
investigating bugs, namely diagnostic print statements, unit test-
ing, a source-level debugger, submissions to an auto-grader, and
manual tracing. We then found that the simplest technique, DPS, is
one of the most commonly used technique. We further found that
some of these students routinely use a combination of different bug
investigation techniques. Students using such a combination tend
to have better project performance. Finally, we tried to discover
some ineffective bug investigation practices, and found that relying
on the auto-grader as an "oracle" for correctness is an inefficient
way to debug.

For our future work, we plan to explore more on the use of
multiple debugging techniques. We plan to develop a metric to
quantify the level of use for different techniques. We also plan to
identify more ineffective bug investigation practices. This would
allow us to provide feedback to students to discourage the bad
practices. Finally, we hope to provide positive feedback to encourage
students to keep on improving their testing and debugging skills.

REFERENCES
[1] Marzieh Ahmadzadeh, Dave Elliman, and Colin Higgins. 2005. An analysis of

patterns of debugging among novice computer science students. In Proceedings
of the 10th annual SIGCSE conference on Innovation and technology in computer
science education. 84–88.

[2] M Aniche. 2012. RepoDriller.
[3] Keijiro Araki, Zengo Furukawa, and Jingde Cheng. 1991. A general framework

for debugging. IEEE software 8, 3 (1991), 14–20.
[4] Moritz Beller, Niels Spruit, Diomidis Spinellis, and Andy Zaidman. 2018. On

the Dichotomy of Debugging Behavior Among Programmers. In Proceedings of
the 40th International Conference on Software Engineering (ICSE ’18). 572–583.
https://doi.org/10.1145/3180155.3180175

[5] Ryan Chmiel and Michael C Loui. 2004. Debugging: from novice to expert. ACM
SIGCSE Bulletin 36, 1 (2004), 17–21.

[6] Hubert L Dreyfus and Stuart E Dreyfus. 1986. The power of human intuition and
expertise in the era of the computer. Mind over machine. Nueva York: The Free
Press (1986).

[7] Stephen H Edwards, Jason Snyder, Manuel A Pérez-Quiñones, Anthony Allevato,
Dongkwan Kim, and Betsy Tretola. 2009. Comparing effective and ineffective be-
haviors of student programmers. In Proceedings of the fifth international workshop
on Computing education research workshop. 3–14.

[8] James B Fenwick Jr, Cindy Norris, Frank E Barry, Josh Rountree, Cole J Spicer,
and Scott D Cheek. 2009. Another look at the behaviors of novice programmers.
ACM SIGCSE Bulletin 41, 1 (2009), 296–300.

[9] Sue Fitzgerald, Gary Lewandowski, Renee McCauley, Laurie Murphy, Beth Simon,
Lynda Thomas, and Carol Zander. 2008. Debugging: finding, fixing and flailing,
a multi-institutional study of novice debuggers. Computer Science Education 18,
2 (2008), 93–116.

[10] Sue Fitzgerald, Renée McCauley, Brian Hanks, Laurie Murphy, Beth Simon, and
Carol Zander. 2009. Debugging from the student perspective. IEEE Transactions
on Education 53, 3 (2009), 390–396.

[11] Leo Gugerty and Gary Olson. 1986. Debugging by skilled and novice program-
mers. In Proceedings of the SIGCHI conference on human factors in computing
systems. 171–174.

[12] Brent Hailpern and Padmanabhan Santhanam. 2002. Software debugging, testing,
and verification. IBM Systems Journal 41, 1 (2002), 4–12.

[13] Irvin R Katz and John R Anderson. 1987. Debugging: An analysis of bug-location
strategies. Human-Computer Interaction 3, 4 (1987), 351–399.

[14] Ayaan M Kazerouni, Stephen H Edwards, T Simin Hall, and Clifford A Shaffer.
2017. DevEventTracker: Tracking development events to assess incremental
development and procrastination. In Proceedings of the 2017 ACM Conference on
Innovation and Technology in Computer Science Education. 104–109.

[15] Ayaan M Kazerouni, Stephen H Edwards, and Clifford A Shaffer. 2017. Quantify-
ing incremental development practices and their relationship to procrastination.
In Proceedings of the 2017 ACM Conference on International Computing Education
Research. 191–199.

[16] Laurie Murphy, Gary Lewandowski, Renée McCauley, Beth Simon, Lynda
Thomas, and Carol Zander. 2008. Debugging: the good, the bad, and the quirky–a
qualitative analysis of novices’ strategies. ACM SIGCSE Bulletin 40, 1 (2008),
163–167.

[17] G Nagy and MC Pennebaker. 1971. A step toward automatic analysis of logically
undetectable programming errors. In Technical Report RC 3407. IBM Thomas J.
Watson Research Center Yorktown Heights, NY.

[18] Devon H O’Dell. 2017. The debugging mindset. Queue 15, 1 (2017), 71–90.
[19] Michael Perscheid, Benjamin Siegmund, Marcel Taeumel, and Robert Hirschfeld.

2017. Studying the advancement in debugging practice of professional software
developers. Software Quality Journal 25, 1 (2017), 83–110.

[20] Michael J Scott and Gheorghita Ghinea. 2013. On the domain-specificity of
mindsets: The relationship between aptitude beliefs and programming practice.
IEEE Transactions on Education 57, 3 (2013), 169–174.

[21] Anselm Strauss and Juliet Corbin. 1994. Grounded theorymethodology. Handbook
of qualitative research 17 (1994), 273–85.

[22] Min Xie and Bo Yang. 2003. A study of the effect of imperfect debugging on
software development cost. IEEE Transactions on Software Engineering 29, 5
(2003), 471–473.

[23] Andreas Zeller. 2009.Why programs fail: a guide to systematic debugging. Elsevier.

https://doi.org/10.1145/3180155.3180175

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Interviews with Students
	3.2 Online Survey
	3.3 Analysis of Development Process Data

	4 Analysis
	5 Discussion
	6 Threats to validity
	7 Conclusion and Future Work
	References

