
ProgSnap2: A Flexible Format for Programming Process Data
Thomas W. Price
twprice@ncsu.edu

North Carolina State University

David Hovemeyer
daveho@cs.jhu.edu

Johns Hopkins University

Kelly Rivers
krivers@andrew.cmu.edu
Carnegie Mellon University

Ge Gao
ggao5@ncsu.edu

North Carolina State University

Austin Cory Bart
acbart@udel.edu

University of Delaware

Ayaan M. Kazerouni
ayaan@vt.edu
Virginia Tech

Brett A. Becker
brett.becker@ucd.ie

University College Dublin

Andrew Petersen
petersen@cs.toronto.edu
University of Toronto

Luke Gusukuma
lukesg@cs.vt.edu
Virginia Tech

Stephen H. Edwards
edwards@cs.vt.edu

Virginia Tech

David Babcock
dbabcock@ycp.edu

York College

ABSTRACT
In this paper, we introduce ProgSnap2, a standardized format for
logging programming process data. ProgSnap2 is a tool for comput-
ing education researchers, with the goal of enabling collaboration
by helping them to collect and share data, analysis code, and data-
driven tools to support students. We give an overview of the format,
including how events, event attributes, metadata, code snapshots
and external resources are represented. We also present a case study
to evaluate how ProgSnap2 can facilitate collaborative research.
We investigated three metrics designed to quantify students’ dif-
ficulty with compiler errors—the Error Quotient, Repeated Error
Density and Watwin score—and compared their distributions and
ability to predict students’ performance. We analyzed five different
ProgSnap2 datasets, spanning a variety of contexts and program-
ming languages. We found that each error metric is mildly predic-
tive of students’ performance. We reflect on how the common data
format allowed us to more easily investigate our research questions.

KEYWORDS
compiler error metrics; data sharing; programming process data

ACM Reference Format:
ThomasW. Price, David Hovemeyer, Kelly Rivers, Ge Gao, Austin Cory Bart,
Ayaan M. Kazerouni, Brett A. Becker, Andrew Petersen, Luke Gusukuma,
StephenH. Edwards, andDavid Babcock. 2020. ProgSnap2: A Flexible Format
for Programming Process Data. In Proceedings of the 2020 ACM Conference
on Innovation and Technology in Computer Science Education (ITiCSE ’20),
June 15–19, 2020, Trondheim, Norway. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3341525.3387373

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ITiCSE ’20, June 15–19, 2020, Trondheim, Norway
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6874-2/20/06. . . $15.00
https://doi.org/10.1145/3341525.3387373

1 INTRODUCTION
Analysis of programming process data, logged as students complete
programming tasks, has furthered the field of computing education
research (CER) in many ways, allowing researchers to gain insight
into common programming errors [6], develop data-driven tools
to support student learning [24], and improve plagiarism detection
for take-home exams [13]. However, there are few common stan-
dards for how such data should be collected, represented, or shared,
making it more difficult for researchers to collaborate, share tools,
and replicate findings. Initiatives such as the PSLC Datashop [20]
provide a common data format and tools to store, analyze, and
share generic educational log data, accelerating the pace of educa-
tional research. However, programming datasets have a number
of distinct, domain-specific features, which make it difficult to use
generic formats. Programming datasets may track entire projects
with multiple files, and interpreting them often requires specific
metadata, such as the version of the IDE or compiler.

In this paper, we present ProgSnap2: a standardized format for
logging programming process data. Researchers can use ProgSnap2
as a tool to assist in conducting computing education research,
as it is specifically designed to support researchers in collecting,
sharing and analyzing programming process data. The format was
designed to prioritize the needs of both the data producer and the
data consumer. For the data producer, ProgSnap2 makes exporting
data straightforward, with a default structure to encourage best
practices (e.g. what to log and how), a small set of required ele-
ments, and extensibility to support a variety of datasets. For the
data consumer, it makes importing and analyzing data straightfor-
ward, while making explicit how the data were logged, and any
caveats or specifics that might impact analysis.

The primary goal of ProgSnap2 is to enable the CER commu-
nity to more effectively collaborate when analyzing programming
process data. We see three primary use cases: 1) Sharing Data:
There is a high cost to sharing unstandardized data. Both parties
must invest time for the consumer to understand and parse the
new format. A common format lowers these barriers and increases

https://doi.org/10.1145/3341525.3387373
https://doi.org/10.1145/3341525.3387373

adoption, while improving the quality of new and existing log-
ging systems by defining a standard set of events and attributes
to log. Efforts to standardize the format and storage of learning
data in other domains have led to datasets and research efforts
that spanned multiple researchers and institutions [20]. 2) Shar-
ing Analysis Code: A common format also allows researchers to
write analysis code that can be shared and reused on new datasets
that have the same format. This enables researchers to collaborate,
even when sharing data is not possible (e.g. for privacy reasons).
Publishing analysis code can also encourage critical replication
of CER, which is quite rare [12], and encourage the development
of shared analysis libraries. For example, many researchers use
the Error Quotient [17] to quantify learners’ compilation behavior
[3, 18, 23]. In this paper, we developed a public implementation
of the Error Quotient, capable of operating on any dataset in the
ProgSnap2 format, which saves future research effort and ensures
consistency. 3) Sharing Tools: A number of data-driven tools have
been developed to support computing classrooms, such as student
models [36] and on-demand hints [26, 29]. A common input data
format would allow these tools to be more easily shared, reused,
and composed together. These tools could even be published as
services that any researcher can utilize, for example allowing any
programming environment to employ an adaptive student model
by sending its ProgSnap2 data to the appropriate service.

1.1 Related Work
Some prior work has attempted to standardize programming log
data. The Marmoset system [31], for example, included a specifica-
tion for logging edits, runs and tool messages. The Blackbox shared
programming data repository [8] also uses a well-defined data for-
mat for BlueJ logs, and analysis of this data has led to valuable
research insights, including 18 papers as of August 2018 [7] and at
least two [19, 27] since, demonstrating the utility of shared data.
However, neither format has been adopted in other systems, per-
haps because of their system-specific representation. When asked
about the most problematic features of the Blackbox dataset, re-
searchers ranked the Java- and BlueJ-specific aspects of the data as
most problematic [7], suggesting a need for a more general repre-
sentation. Our work builds on the original ProgSnap [14] format,
which defines a language-agnostic standard for representing code
snapshots and submissions. ProgSnap2 extends this format by rep-
resenting a richer set of event data and related resources, and by
using a “flat” representation more suitable for direct analysis by
statistical software. Outside of CER, the PSLC Datashop [20] is a
platform for sharing log data from learning environments, defining
a common format for this data. This work has lead to numerous
papers and insights, as well as a platform for sharing educational
analysis code to run on this data [21]. A similar model could greatly
increase the CER community’s ability to produce and replicate
research findings [25].

A standard format should facilitate cross-institutional analyses
with programming data, which have previously lead to important
insights about the generalizability of findings. For example, Pe-
tersen et al. investigated the power of the Error Quotient metric
(EQ; detailed in Section 3.1) to predict student grades across 6
datasets from 4 programming environments [23]. They found that

results differed meaningfully across contexts, and that they were
sensitive to the way the the EQ was parameterized. They conclude
that “data-driven metrics for evaluating student behaviours must be
scrutinized across a wide variety of contexts.” We argue that this is
true, and further work is needed, but that without a standard format,
collaborative, cross-data investigations are challenging and require
strong coordination among authors. Ihantola et al. [16] described
some of these barriers in their attempt to re-analyze, replicate and
reproduce results from prior CER papers with both new datasets
and the original datasets. They found many necessary implementa-
tion details (e.g. how to define a programming session) were not
specified in the original papers, leading to difficulty replicating re-
sults. These data-centric barriers to replication likely contribute to
the very low percentage of replication papers in CER (2.38%) [12].
In this work, we show how ProgSnap2 addresses these barriers
by allowing authors to share analysis code that operates across
datasets, requiring minimal coordination, and enabling replication.

1.2 History and Development Principles
The ProgSnap2 format arose from the needs, experiences and real
datasets of a large working group of researchers, working through
the CS-SPLICE [1] project, an NSF-funded effort to develop stan-
dards, protocols, and learning infrastructure for CER. Initial con-
cepts were adapted from ‘DATASTAND” [32], a report from the
Leveraging Programming and Social Analytics to Improve Com-
puting Education Workshop at ICER 2017. Through several remote
discussions from 2018-2019, we developed the following guiding
principles for the standard: 1) Model diverse data: ProgSnap2’s
data model is rich enough to describe real data from a variety of
sources and contexts. It is grounded in the experiences of working
group members, who are authors of systems that collect program-
ming process data and researchers who use this data. 2) Specify
what is known and unknown: Diverse systems also differ in
terms of what is and is not recorded. Therefore, the standard allows
data providers to specify when information is unknown, rather than
requiring them to create “synthetic” data values to fill in required
fields. 3) Prioritize ease of analysis: A standard is useful only
insofar as it it used. To make analysis straightforward, ProgSnap2
uses comma-separated value (CSV) files, and a denormalized format
for the main event table, allowing direct analysis with statistical
software (e.g. R, Python). 4) Standardize best practices: We de-
signed the format to guide data-producers towards best practices
for logging, so that ProgSnap2 would be useful for those designing
new systems. For example, we have learned through experience that
logging both client and server timestamps is useful for web-based
systems, so both are encouraged fields in ProgSnap2.

2 THE PROGSNAP2 SPECIFICATION
A ProgSnap21 dataset consists of logs and relevant data that capture
how users interacted with a programming environment. A dataset
includes amain event table, ametadata table and optional link tables
to reference outside resources, all represented as CSV files. A dataset
also contains a code repository containing sequential snapshots of
students’ code and optional auxiliary resources.

1This paper describes ProgSnap2 version 6. See the ProgSnap2 website:
http://bit.ly/ProgSnap2 for the most recent version of the standard.

http://bit.ly/ProgSnap2

2.1 Main Event Table
The main event table represents a collection of all events that took
place in the programming environment. These events can represent
both fine-grained interactions, such as individual keystrokes, and
high-level actions, such as entire problem attempts, depending
on the granularity of the logging system. Each row in the table
represents one event, and each column represents an event property.
All events have an EventType column, and ProgSnap2 provides
over 20 predefined EventTypes, listed in Figure 1 (e.g. File.Edit,
Compile.Error, Run.Program). Data providers can also define new
EventTypes, prefixed with “X-” (e.g. “X-HintRequest”). ProgSnap2
defines a small set of mandatory columns: 1) EventType: a value
indicating the type of event; 2) EventID: the unique ID of the event;
3) SubjectID: the ID of the human subject (or group) associated
with the event; 4) Toolnstances: the names and versions of tools
(e.g. IDE, compiler) associated with the event; and 5) CodeStateID:
an ID for a snapshot of the source code when the event occurred.

ProgSnap2 also defines a variety of optional columns with stan-
dard names. These include recommended columns (e.g. ClientTimes-
tamp, CourseID), which should always be included if available, but
may not be recorded by every system. They also include event-
specific columns, which are either required or recommended for
certain EventTypes (e.g. CompileMessageType is only required for
“Compile.Error” and “Compile.Warning” events). This leads to an
intentionally sparse table. Data producers are encouraged to in-
clude as many optional columns and as much detail as possible.
They can also define new columns when needed, prefixed with “X-”.
Examples of optional columns include: ID Columns (e.g. Cour-
seID, AssignmentID): these provide contextual information for the
associated event, and allow additional information to be specified
by a "Link Table" (described below). Edit Columns (e.g. EditType,
CodeStateSection): these describe how code was edited (e.g. typing,
paste, undo) andwhere the edit took place.RunColumns: (e.g. Pro-
gramInput,CompileMessageData): these record relevant information
about how the code was compiled and run. Experiment Columns
(e.g. ExperimentalCondition, InterventionType): these record data
about experimental interventions used in research studies.

2.2 Metadata, Link Tables and Resources
The Dataset Metadata is a mandatory CSV file specifying the
global properties of the dataset as key/value pairs, shown in Figure 1.
Link Tables are optional files used to associate one or more ID
values with a Resource providing more information. For example,
a link table could associate a TermID/CourseID pair with the URL
of a course website for that course and term. A Resource is an
arbitrary data blob, identified by a URL in a Link Table, which can
be either external (accessed via the internet) or internal (local to
the dataset). The inclusion of Link Tables and Resources is optional
but encouraged. We also encourage data producers to use internal
resources (e.g. saving a static version of the course website in the
dataset) to ensure they are not lost or changed.

2.3 Code State Representations
A Code State, or snapshot, represents the entirety of a student’s
code at one point in time and is often the focus of log data analyses.
ProgSnap2 is intended to represent a variety of data, coming from

single-function exercises, complex final projects, or block-based
programs. To capture such diverse data, ProgSnap2 supports three
source code representations: Git, Directory, and Table. This choice
allows data producers to use the most appropriate representation,
while constraining that choice to formats which are easily processed.
Each format maps a CodeStateID value to a code state, which is
simply a collection of one or more files with an optional directory
structure. In the Git format, code states are represented as commits
in a Git repository stored within the dataset. This format is appro-
priate for datasets where code states may consist of a relatively
large number of files. In the Directory format, each CodeStateID
maps to the name of a directory stored within the dataset which
contains a collection of all files that are part of the code state. This
format is appropriate for datasets where code states contain a small
number of files. In the Table format, a dedicated CSV file maps
CodeStateID values to source code. This format is only appropriate
for datasets where each code state consists of a single text file, and
where the amount of data per code state is small.

3 CASE STUDY
The goal of ProgSnap2 is to facilitate collaboration, replication, and
the sharing of data and analysis. To evaluate how well it does so, we
set out to replicate the same analysis to address the same research
questions across five different programming datasets. Our collabo-
ration context included common challenges for multi-institutional
studies: 1) The datasets were diverse, collected in a variety of class-
room contexts, using three different programming languages; 2)
The analysis code was primarily written by two authors, who did
not have access to three of the datasets, as they could not be shared
for privacy reasons; 3) The collaborating authors were at different
institutions, with limited communication outside of email. In this
case study, we highlight the ways in which ProgSnap2 helped us to
overcome these challenges and lessons we learned. We also show
how this cross-dataset analysis can lead to unique research insights.

3.1 Compile Error Metrics
For our case study, we focus on compiler error metrics, a common
type of programming data analysis which attempts to quantify the
amount that students struggle with syntax errors [4]. The Error
Quotient (EQ) [17] (revised in [30]) examines consecutive pairs of
compilation events and assigns a score to each pair, which increases
if both compilations include an error, and again if those errors
have the same error type. The Watwin score [34] builds on the
EQ by considering the time taken to resolve errors, the location
(line number) of errors, and the full compilation message. The
Normalized Programming StateModel (NPSM) [9] further considers
execution traces, debugging and idle time.

Compile error metrics have been shown to correlate with stu-
dent’s grades [17, 23, 33] (as have compiler error messages them-
selves [5]). This makes them useful for predicting at-risk students
[33] and augmenting traditional measures of academic performance
[35]. However, the predictive power of the EQ can vary across dif-
ferent contexts and datasets [23], and it does not predict students’
grades in all contexts [16]. In response, Becker developed the Re-
peated Error Density (RED)metric to be less context-dependent,
specifically for shorter programming sessions where the EQ may

* M ain Event Table

* EventID ID
* EventType EventType
* SubjectID ID
* ToolInstances String
* CodeStateID ID

Order Integer
ServerTimestamp Timestamp
ServerTimezone Timezone
ClientTimestamp Timestamp
ClientTimezone Timezone
CourseID ID
CourseSectionID ID
TermID ID
AssignmentID ID
AssignmentIsGraded Boolean
ProblemID ID
ProblemIsGraded Boolean
Attempt Integer
ExperimentalCondition String
TeamID ID
LoggingErrorID ID
ParentEventID ID
SessionID ID
ProjectID ID
ResourceID ID
CodeStateSection RelativePath
DestinationCodeStateSection RelativePath
EventInitiator EventInitiator
EditType EditType
CompileResult ProgramResult
CompileM essageType String
CompileM essageData String
SourceLocation SourceLocation
ExecutionID ID
TestID ID
ExecutionResult ProgramResult
Score Real
ExtraCreditScore Real
ProgramInput String
ProgramOutput String
ProgramErrorOutput String
InterventionType String
InterventionCategory InterventionCategory

InterventionM essage String
User-defined Columns ...

* D ataset M etadata

Version Integer
EventOrderScope EventOrderScope

IsEventOrderingConsistent Boolean
CodeStateRepresentation CodeStateType

EventOrderScopeColumns String

CodeStateType
<Enum>

Table
Directory
Git

EventType
<Enum>

Session.Start
Session.End
Compile
Compile.Error
Compile.Warning
Submit
Run.Program
Run.Test
Debug.Program
Debug.Test
Project.Open
Project.Close
File.Create
File.Delete
File.Open
File.Close
File.Rename
File.Edit
File.Focus
Resource.View
Intervention
X -*

EventInitiator
<Enum>

UserDirectAction
UserIndirectAction
ToolReaction
ToolTimedEvent
InstructorDirectAction

InstructorIndirectAction

TeamM emberDirectAction

TeamM emberIndirectAction

X-*

EditType
<Enum>

GenericEdit
Insert
Delete
Replace
M ove
Paste
Duplicate
Undo
Redo
Refactor
ResetCompileResult

<Enum>
Success
Warning
Error

InterventionCategory
<Enum>

Feedback
H int
CodeH ighlight
CodeChange
EarnedGrade
X-*

Link Table

ID 1 (e.g. CourseID) ID
ID 2 (e.g. TermID) ID
... (additional IDs) ID
Resource URL URI

Cour se. csv
Cour seTer m. csv
Subj ect . csv

File System V iew

Mai nTabl e. csv

Dat aset Met adat a. csv

Student Code Files

Additional Resources

* Indicates Required Column or Table

ProgSnap2 Form at

EventOrderScope
<Enum>

Global
Restricted
N one

Li nkTabl es/

Resour ces/

CodeSt at es/

ExecutionResult
<Enum>

Success
Timeout
Error
TestFailed

Figure 1: A diagram of the ProgSnap2 Format. Lines connect columns to their possible values, files to their respective tables,
and IDs to their definitions in the Main Event Table.

Table 1: Statistics for the 5 datasets. The number of students
removed by filtering are given in parentheses. The last three
rows indicate average sessions per subject, number of com-
piles, and percent of compiles with errors.

System CC CWO BlockPy PCRS ITAP
Language C Java Python Python Python
Students 90 (-4) 410 (-3) 647 (-6) 1192 (-56) 73 (-16)
Exercises 86 50 244 99 38
Sess./Sub. 23.2 11.2 13.0 12.3 1.5
Compiles 40613 67046 460114 308830 2736
% Error 27.3% 41.3% 15.1% 20.5% 22.8%

be less accurate [3]. Despite much prior work, it is still a very open
question which of these metrics is most predictive of grades and how
consistent that prediction is across datasets – questions we address
in this case study by comparing EQ, Watwin and RED.

3.2 Datasets
We focus our analysis on five programming datasets, collected
from a variety of online practice environments used in univer-
sity computing courses, summarized in Table 1. The CloudCoder
(CC) dataset was collected in a CS1 course required for CS, Electri-
cal/Computer Engineering, and Mathematics majors, taught using
C at a small, undergraduate college in the Eastern United States.
Students worked on 86 small (5-15 line) programming exercises in a
web-based programming practice environment called CloudCoder
[15] TheCodeWorkout (CWO) dataset was collected during a CS1
course required for CS majors at a large, public university in the
United States. It contains data from two sections of students who
worked on 50 small programming exercises (10-26 lines) in Java,
using a web-based practice environment called CodeWorkout [10].
Students completed multi-exercise homework assignments in Code-
Workout throughout the semester and could repeatedly attempt
each exercise until getting it correct. The BlockPy dataset was
collected in a CS1 course for non-CS majors in STEM disciplines
at a large, public university in the United States. Students worked
in a dual block/text programming environment called BlockPy [2]
writing small programs (6-15 lines). The PCRS dataset was col-
lected during a CS1 course for both CS majors and non-majors at a
large, public university in Canada. Students worked in the PCRS
[22] practice environment to complete short Python problems (3-15
lines) for weekly homeworks, receiving feedback from test cases.
The ITAP dataset was collected during a CS1 course for non-majors
at a private university in the United States. Students were invited
to complete optional Python practice problems (2-10 lines) in the
ITAP tutoring system [29], as part of a prior study [28] that lasted
7 weeks. Students could attempt the problems any number of times,
receiving feedback from test cases and hints.

3.3 Method
We evaluated ProgSnap2’s ability to assist in answering two re-
search questions: RQ1) How effective are error metrics at predicting
student grades, and is this consistent across datasets? RQ2) Are
there meaningful differences between error metrics? While we use
real RQs and attempt to generate real insight, our primary goal in
this work is to create an authentic evaluation context for ProgSnap2.

3.3.1 ErrorMetric Implementation. Implementing analyses requires
making a number of assumptions and decisions, and an important
benefit of sharing analysis code among researchers is that these
decisions are embodied in that code2. In this section, we detail the
decisions we made when implementing our three error metrics,
based on earlier work by Petersen et al. [23].

Sessions: Each error metric was designed to be calculated for a
single student over a specific period of time, which we call a session.
ProgSnap2 allows a dataset to provide a SessionID column, and
we used this value when it was present. Otherwise, we defined a
session as a series of events with no more than a 20 minute gap
between any two consecutive events, as in [23].

Cleaning the Data: As in [23], we removed any session that
contained only a small number of events: we required a minimum
of 4 Compile events, since they are the subject of this study. We
then removed any students from our analysis if their session count
was more than 2 SDs below average for the dataset. Table 1 reports
the number of students removed in this process.

Error Pairs: Each error metric operates over pairs of compila-
tion events. Like Petersen et al., we extracted each consecutive pair
of events from a session, and ignored any event pairs that occurred
in different problems/assignments, or had the exact same code.

Python Compilation Errors: Though Python is an interpreted
language, Petersen et al. [23] chose to count any Python runtime
error as a compiler error. By contrast, our Python datasets only
included Python SyntaxError exceptions as Compile.Error events.

Automatic compilation: BlockPy automatically compiles stu-
dents’ code as they work, presenting them with feedback (e.g. com-
pilation errors [11]). As in [23], we created a Compile.Error event
only when a student ran their code and received errors.

Algorithm Implementations: For EQ, we used the original
algorithm proposed by Jadud [17], not the revised version [30].
The RED metric [3] is not normalized, meaning that it increases
monotonically as a student continues to work. To make it compa-
rable with the EQ and Watwin, we used a “normalized” RED, in
which we divided the total RED score by the number of compila-
tion pairs considered (as with the EQ). Watwin proposes cleaning
code before analysis by removing comments, and to ignore edits
in which code was deleted. We chose not to take this step to avoid
programming-language-specific analysis.

We note that many of these decisions, such as the definition of
a session and what constitutes a compilation or error event, are
explicitly represented in the ProgSnap2 format, allowing each data
provider to use definitions that make sense for their context.

3.3.2 Collaboration Context. We report here the iterative process
by which our analysis was carried out, in order to illustrate the
ways in which ProgSnap2 shaped our work. Eight authors con-
tributed to the analysis, working at five different institutions. First,
each dataset was converted into the ProgSnap2 format, since the
datasets predated ProgSnap2. We defined a set of required Event-
Types and column names for our compile error metric analysis
(see [25]), and ensured that each dataset had these attributes. At
the same time, one pair of authors worked to implement the EQ,
RED and Watwin algorithms, along with procedures for cleaning
and summarizing the datasets. However, this team did not have
2Code and public datasets can be found at: github.com/thomaswp/ProgSnap2Analysis

http://github.com/thomaswp/ProgSnap2Analysis

BlockPy CC CWO ITAP PCRS

E
Q

R
E

D
W

atw
in

0.5 0.5 0.5 0.5 0.5

0

3

6

9

12

0

3

6

9

12

0

3

6

9

12

Value

D
en

si
ty

Figure 2: Distributions of each error metric for each dataset.

access to three of the datasets, which could not be shared easily due
to privacy restrictions. This is a common challenge for secondary
analysis like ours, and to overcome it, each team provided a sample
ProgSnap2 dataset, consisting of non-student logs, which could
be freely shared and used to test both our analysis code and the
conversion to the ProgSnap2 format. This led to several iterations
of both conversion and analysis code, ensuring that all required
attributes were present, and debugging errors that occurred. Once
we developed a stable version of the analysis code, each team ran it
on their respective dataset and reported back the aggregate results.

3.4 Results and Discussion
RQ1: How effective are error metrics at predicting student grades,
and is this consistent across datasets? Table 2 shows a Pearson cor-
relation matrix for each error metric and for class grades across
5 datasets (though grades were only available in the CC, CWO
and BlockPy datasets). All error metrics had a significant, negative
correlation with student grades on the three datasets, meaning that
students with higher EQ/RED/Watwin scores had lower overall
grades. Across datasets and metrics, we found that error metrics
explained between 3.6% and 21.8% of the variance in student grades.
This range is consistent with most prior work [17, 23, 35]. Our
results confirm the findings of Petersen et al. [23] that the EQ is
predictive of student grades across datasets, but we further show
that this is true of RED and Watwin as well. However, no metric
explains much of the variance in student grades, suggesting the
need for different predictive approaches.

RQ2: Are there meaningful differences between error metrics? As
shown in Table 2, EQ, RED and Watwin are all highly correlated
on all datasets (r = 0.854-0.988). Further, Figure 2 shows that the
distribution of all error metrics are quite similar for any given
dataset (e.g. PCRS is highly right-skewed for all metrics), but they
also vary across datasets (CWO is much less so). As a result, Table 2
shows little difference in the correlation of each metric and student
grades, suggesting that there is little difference in their predictive
power. This result contrasts with prior work, which claimed that
Watwin outperformed EQ [35], or theorized that RED would be
less context dependent than EQ [3]. We hypothesize that these
claims may have resulted in prior work because each error metric

Table 2: Correlations between each errormetric,
as well as each metric with class grades.

Dataset EQ RED Watwin

CC
RED 0.988***
Watwin 0.963*** 0.988***
Grade -0.409*** -0.467*** -0.374**

CWO
RED 0.975***
Watwin 0.871*** 0.903***
Grade -0.363*** -0.357*** -0.300***

BlockPy
RED 0.991***
Watwin 0.860*** 0.854***
Grade -0.254*** -0.244*** -0.190***

PCRS RED 0.983**
Watwin 0.923*** 0.912***

ITAP RED 0.946***
Watwin 0.900*** 0.788***

Significance codes (p <): * = 0.05; ** = 0.01; *** = 0.001

was developed and evaluated on a single dataset, perhaps creating
localized improvements that did not generalize to other datasets.
While we did see instances of one metric outperforming another
(e.g. RED outperforms EQ on the CC dataset), these trends reversed
on other datasets. This highlights the importance of cross-dataset
analysis, such as this one, and public datasets and benchmarks,
which are all facilitated by ProgSnap2.

3.5 Reflection and Conclusion
Overall, we found that ProgSnap2 accomplished its goals of facilitat-
ing collaboration and allowing us to gain research insight: despite
10 years of research on error metrics, they remain similar and only
mildly predictive of grades, calling into question the merit of contin-
ued research in this area. We found ProgSnap2 enabled us to easily
share and analyze programming data. Data providers were able to
export to the format with a reasonable amount of effort (a few days,
typically), and the analysis code was straightforward to implement.
For example, the first time the EQ analysis script was applied to the
CC dataset, it ran without errors, even though the author of the EQ
script had no direct access to the CC data. However, ProgSnap2 did
not remove the inherent challenges of data analysis, and ultimately
it took 4-5 iterations of improving data cleaning code, verifying
results and fixing errors to finalize our results. Additionally, while
ProgSnap2’s EventType and column definitions were generally
agreed upon, small differences in interpretation (e.g. what goes into
CompileMessageType vs CompileMessageData) had to be resolved.
We note that while our discussion in this case study was abbrevi-
ated for space reasons, we could extend our analysis to investigate
when and why each metric was effective. Overall, our results show
that ProgSnap2 has the potential to greatly facilitate collaboration
and data sharing. Its utility will require wider adoption among
researchers, and we invite those interested to use the footnote links
to join the conversation, produce or convert a dataset, develop a
new logging system, or contribute to cross-dataset analysis code.

4 ACKNOWLEDGEMENTS
This work was supported in part by NSF grants DLR-1740775, DLR-
1740798, and DLR-1740765.

REFERENCES
[1] [n.d.]. SPLICE: Standards, Protocols, and Learning Infrastructure for Computing

Education. https://cssplice.github.io/. Accessed: 2019-08-19.
[2] Austin Cory Bart, Javier Tibau, Eli Tilevich, Clifford A Shaffer, and Dennis Ka-

fura. 2017. Blockpy: An open access data-science environment for introductory
programmers. Computer 50, 5 (2017), 18–26.

[3] Brett A. Becker. 2016. A New Metric to Quantify Repeated Compiler Errors for
Novice Programmers. In Proceedings of the 2016 ACM Conference on Innovation
and Technology in Computer Science Education (ITiCSE ’16). ACM, New York, NY,
USA, 296–301. https://doi.org/10.1145/2899415.2899463

[4] Brett A. Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Dennis J. Bouvier,
Brian Harrington, Amir Kamil, Amey Karkare, Chris McDonald, Peter-Michael
Osera, Janice L. Pearce, and James Prather. 2019. Compiler Error Messages Con-
sidered Unhelpful: The Landscape of Text-Based Programming Error Message
Research. In Proceedings of the Working Group Reports on Innovation and Technol-
ogy in Computer Science Education (ITiCSE-WGR ’19). ACM, New York, NY, USA,
177–210. https://doi.org/10.1145/3344429.3372508

[5] Brett A Becker and Catherine Mooney. 2016. Categorizing compiler error mes-
sages with principal component analysis. In 12th China-Europe International
Symposium on Software Engineering Education (CEISEE 2016), Shenyang, China,
28-29 May 2016.

[6] Neil C.C. Brown and Amjad Altadmri. 2014. Investigating Novice Programming
Mistakes: Educator Beliefs vs. Student Data. In Proceedings of the Tenth Annual
Conference on International Computing Education Research (ICER ’14). ACM, New
York, NY, USA, 43–50. https://doi.org/10.1145/2632320.2632343

[7] Neil CC Brown, Amjad Altadmri, Sue Sentance, and Michael Kölling. 2018. Black-
box, Five Years On: An Evaluation of a Large-scale Programming Data Collection
Project. In Proceedings of the 2018 ACM Conference on International Computing
Education Research. ACM, 196–204.

[8] Neil C.C. Brown, Michael Kölling, Davin McCall, and Ian Utting. 2014. Blackbox:
A Large Scale Repository of Novice Programmers’ Activity. In Proceedings of
the 45th ACM Technical Symposium on Computer Science Education (SIGCSE ’14).
ACM, New York, NY, USA, 223–228. https://doi.org/10.1145/2538862.2538924

[9] Adam S Carter, Christopher D Hundhausen, and Olusola Adesope. 2015. The
normalized programming state model: Predicting student performance in com-
puting courses based on programming behavior. In Proceedings of the eleventh
annual International Conference on International Computing Education Research.
ACM, 141–150.

[10] Stephen H Edwards and Krishnan Panamalai Murali. 2017. CodeWorkout: short
programming exercises with built-in data collection. In Proceedings of the 2017
ACM Conference on Innovation and Technology in Computer Science Education.
ACM, 188–193.

[11] Luke Gusukuma, Austin Cory Bart, Dennis Kafura, and Jeremy Ernst. 2018.
Misconception-Driven Feedback. Proceedings of the 2018 ACM Conference on
International Computing Education Research - ICER ’18 1 (2018), 160–168. https:
//doi.org/10.1145/3230977.3231002

[12] Qiang Hao, David H Smith IV, Naitra Iriumi, Michail Tsikerdekis, and Andrew J
Ko. 2019. A Systematic Investigation of Replications in Computing Education
Research. ACM Transactions on Computing Education (TOCE) 19, 4 (2019), 42.

[13] Arto Hellas, Juho Leinonen, and Petri Ihantola. 2017. Plagiarism in Take-home
Exams: Help-seeking, Collaboration, and Systematic Cheating. In Proceedings
of the 2017 ACM Conference on Innovation and Technology in Computer Science
Education (ITiCSE ’17). ACM, New York, NY, USA, 238–243. https://doi.org/10.
1145/3059009.3059065

[14] David Hovemeyer, Arto Hellas, Andrew Petersen, and Jaime Spacco. 2017.
Progsnap: Sharing Programming Snapshots for Research (Abstract Only). In
Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Sci-
ence Education (SIGCSE ’17). ACM, New York, NY, USA, 709–709. https:
//doi.org/10.1145/3017680.3022418

[15] David Hovemeyer and Jaime Spacco. 2013. CloudCoder: a web-based program-
ming exercise system. Journal of Computing Sciences in Colleges 28, 3 (2013),
30–30.

[16] Petri Ihantola, Arto Vihavainen, Alireza Ahadi, Matthew Butler, Jürgen Börstler,
Stephen H Edwards, Essi Isohanni, Ari Korhonen, Andrew Petersen, Kelly Rivers,
et al. 2015. Educational data mining and learning analytics in programming:
Literature review and case studies. In Proceedings of the 2015 ITiCSE on Working
Group Reports. ACM, 41–63.

[17] Matthew C. Jadud. 2006. Methods and Tools for Exploring Novice Compilation
Behaviour. In Proceedings of the Second International Workshop on Computing
Education Research (ICER ’06). ACM, New York, NY, USA, 73–84. https://doi.org/

10.1145/1151588.1151600
[18] Matthew C Jadud and Brian Dorn. 2015. Aggregate Compilation Behavior: Find-

ings and Implications from 27,698 Users. In Proceedings of the 11th International
Computing Education Research Conference. 131–139. https://doi.org/10.1145/
2787622.2787718

[19] Ioannis Karvelas, Annie Li, and Brett A. Becker. 2020. The Effects of Compilation
Mechanisms and Error Message Presentation on Novice Programmer Behavior. In
Proceedings of the 51st ACM Technical Symposium on Computer Science Education
(SIGCSE ’20). Association for ComputingMachinery, New York, NY, USA, 759–765.
https://doi.org/10.1145/3328778.3366882

[20] Kenneth R Koedinger, Ryan SJd Baker, Kyle Cunningham, Alida Skogsholm, Brett
Leber, and John Stamper. 2010. A data repository for the EDM community: The
PSLC DataShop. Handbook of educational data mining 43 (2010), 43–56.

[21] Kenneth R Koedinger, John Stamper, and Paulo F Carvalho. [n.d.]. Sharing and
Reusing Data and Analytic Methods with LearnSphere. Hands-on 2 ([n. d.]), 30p.

[22] Daniel Marchena Parreira, Andrew Petersen, and Michelle Craig. 2015. Pcrs-c:
Helping students learn c. In Proceedings of the 2015 ACM Conference on Innovation
and Technology in Computer Science Education. ACM, 347–347.

[23] Andrew Petersen, Jaime Spacco, and Arto Vihavainen. 2015. An Exploration
of Error Quotient in Multiple Contexts. In Proceedings of the 15th Koli Calling
Conference on Computing Education Research (Koli Calling ’15). ACM, New York,
NY, USA, 77–86. https://doi.org/10.1145/2828959.2828966

[24] Thomas W. Price, Yihuan Dong, and Dragan Lipovac. 2017. iSnap: Towards
Intelligent Tutoring in Novice Programming Environments. In Proceedings of the
2017 ACM SIGCSE Technical Symposium on Computer Science Education (SIGCSE
’17). ACM, New York, NY, USA, 483–488. https://doi.org/10.1145/3017680.3017762

[25] Thomas W Price and Ge Gao. 2019. Lightning Talk: Curating Analyses for
Programming Log Data. In Proceedings of SPLICE 2019 workshop Computing
Science Education Infrastructure: From Tools to Data at 15th ACM International
Computing Education Research Conference.

[26] Thomas W Price, Rui Zhi, and Tiffany Barnes. 2017. Evaluation of a Data-driven
Feedback Algorithm for Open-ended Programming.. In EDM.

[27] Kyle Reestman and Brian Dorn. 2019. Native Language’s Effect on Java Compiler
Errors. In Proceedings of the 2019 ACM Conference on International Computing
Education Research (ICER ’19). Association for Computing Machinery, New York,
NY, USA, 249–257. https://doi.org/10.1145/3291279.3339423

[28] Kelly Rivers, Erik Harpstead, and Ken Koedinger. 2016. Learning Curve Analysis
for Programming: Which Concepts do Students Struggle With?. In Proceedings of
the International Computing Education Research Conference. 143–151.

[29] Kelly Rivers and Kenneth R Koedinger. 2017. Data-driven hint generation in
vast solution spaces: a self-improving python programming tutor. International
Journal of Artificial Intelligence in Education 27, 1 (2017), 37–64.

[30] Maria Mercedes T Rodrigo, Emily Tabanao, Ma Beatriz E Lahoz, and Matthew C
Jadud. 2009. Analyzing online protocols to characterize novice java programmers.
Philippine Journal of Science 138, 2 (2009), 177–190.

[31] Jaime Spacco, Jaymie Strecker, David Hovemeyer, and William Pugh. 2005. Soft-
ware repository mining with Marmoset: An automated programming project
snapshot and testing system. In ACM SIGSOFT Software Engineering Notes, Vol. 30.
ACM, 1–5.

[32] John Stamper, Stephen Edwards, Andrew Petersen, Thomas Price, and Ian Utting.
2017. Developing a Data Standard for Computing Education Learning Process
Data (DATASTAND). https://cssplice.github.io/DATASTAND.pdf. Accessed:
2019-08-19.

[33] Emily S. Tabanao, Ma. Mercedes T. Rodrigo, and Matthew C. Jadud. 2011. Pre-
dicting At-risk Novice Java Programmers Through the Analysis of Online
Protocols. In Proceedings of the Seventh International Workshop on Comput-
ing Education Research (ICER ’11). ACM, New York, NY, USA, 85–92. https:
//doi.org/10.1145/2016911.2016930

[34] Christopher Watson, Frederick WB Li, and Jamie L Godwin. 2013. Predicting
performance in an introductory programming course by logging and analyzing
student programming behavior. In 2013 IEEE 13th International Conference on
Advanced Learning Technologies. IEEE, 319–323.

[35] Christopher Watson, Frederick W.B. Li, and Jamie L. Godwin. 2014. No Tests
Required: Comparing Traditional and Dynamic Predictors of Programming
Success. In Proceedings of the 45th ACM Technical Symposium on Computer
Science Education (SIGCSE ’14). ACM, New York, NY, USA, 469–474. https:
//doi.org/10.1145/2538862.2538930

[36] Michael Yudelson, Roya Hosseini, Arto Vihavainen, and Peter Brusilovsky. 2014.
Investigating automated student modeling in a Java MOOC. Educational Data
Mining 2014 (2014), 261–264.

https://cssplice.github.io/
https://doi.org/10.1145/2899415.2899463
https://doi.org/10.1145/3344429.3372508
https://doi.org/10.1145/2632320.2632343
https://doi.org/10.1145/2538862.2538924
https://doi.org/10.1145/3230977.3231002
https://doi.org/10.1145/3230977.3231002
https://doi.org/10.1145/3059009.3059065
https://doi.org/10.1145/3059009.3059065
https://doi.org/10.1145/3017680.3022418
https://doi.org/10.1145/3017680.3022418
https://doi.org/10.1145/1151588.1151600
https://doi.org/10.1145/1151588.1151600
https://doi.org/10.1145/2787622.2787718
https://doi.org/10.1145/2787622.2787718
https://doi.org/10.1145/3328778.3366882
https://doi.org/10.1145/2828959.2828966
https://doi.org/10.1145/3017680.3017762
https://doi.org/10.1145/3291279.3339423
https://cssplice.github.io/DATASTAND.pdf
https://doi.org/10.1145/2016911.2016930
https://doi.org/10.1145/2016911.2016930
https://doi.org/10.1145/2538862.2538930
https://doi.org/10.1145/2538862.2538930

	Abstract
	1 Introduction
	1.1 Related Work
	1.2 History and Development Principles

	2 The ProgSnap2 Specification
	2.1 Main Event Table
	2.2 Metadata, Link Tables and Resources
	2.3 Code State Representations

	3 Case Study
	3.1 Compile Error Metrics
	3.2 Datasets
	3.3 Method
	3.4 Results and Discussion
	3.5 Reflection and Conclusion

	4 Acknowledgements
	References

