Toward Continuous Assessment of the Programming Process

Ayaan M. Kazerouni
ayaan@vt.edu
Virginia Tech
Blacksburg, VA

ABSTRACT

Assessment of software tends to focus on postmortem evaluation
of metrics like correctness, mergeability, and code coverage. This is
evidenced in the current practices of continuous integration and de-
ployment that focus on software’s ability to pass unit tests before it
can be merged into a deployment pipeline. However, little attention
or tooling is given to the assessment of the software development
process itself. Good process becomes both more challenging and
more critical as software complexity increases. Real-time evalua-
tion and feedback about a student’s software development skills,
such as incremental development, testing, and time management,
could greatly increase productivity and improve the ability to write
tested and correct code. In my research, I develop models to quan-
tify a student’s programming process in terms of these metrics. By
measuring the programming process, I can empirically evaluate its
adherence to known best practices in software engineering. With
the ability to characterize this, I can build tools to provide them
with intelligent and timely feedback when they are in danger of
straying from those practices. In the long term, I hope to contribute
to the standardization and adoption of continuous software assess-
ment techniques that include not only the final product, but also
the process undertaken to produce it.

CCS CONCEPTS

« Social and professional topics — Software engineering ed-
ucation; » Software and its engineering;

KEYWORDS
incremental development, procrastination, software testing

ACM Reference Format:

Ayaan M. Kazerouni. 2019. Toward Continuous Assessment of the Program-
ming Process. In International Computing Education Research Conference
(ICER ’19), August 12—-14, 2019, Toronto, ON, Canada. ACM, New York, NY,
USA, 2 pages. https://doi.org/10.1145/3291279.3339429

1 BACKGROUND AND MOTIVATION

Mid-level Computer Science courses often involve major program-
ming projects, with lifecycles measured in weeks. Assessment of
such projects tends to focus on postmortem evaluation of aspects
like correctness, code style, and code coverage, as measured by
tools such as Web-CAT [4]. However, there is little attention or

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICER 19, August 12—14, 2019, Toronto, ON, Canada

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6185-9/19/08.

https://doi.org/10.1145/3291279.3339429

tooling for the assessing the software development process itself.
This assessment becomes both more challenging and more crucial
to address as software complexity increases. Many students display
inadequate skill in time management [5] and fundamental devel-
opment processes such as software testing [2, 15], and teaching
these skills is not formally included in the typical undergraduate
CS curriculum [8].

Beller proposed the concept of Feedback-Driven Development [1],
in which software developers are given descriptive feedback on their
workflows, as opposed to prescriptive recommendations to follow
certain methodologies. The Normalized Programming State Model
(NPSM) [3] models the programming process of CS 2 students as a
series of state transitions between code editing, debugging, error
states, etc. Time spent in these states were shown to be effectve
predictors of assignment and course performance. Edwards et al.
found evidence that: 1) Procrastination has a strong correlation
with lower project scores [6], and 2) Regular, automatic, and adap-
tive feedback helps reduce late submissions [14]. Finally, Loksa
et al. found evidence linking explicit guidance on metacognitive
aspects of programming with productivity [13] and self-regulation
with improved programming success [12]. These studies provide
encouraging evidence (in varied contexts) suggesting that we might
be able to change certain programming behaviors with the help of
targeted interventions.

Unlike the works described above, I focus on more advanced
students working on larger projects, and model higher-order behav-
iors such as procrastination, software testing, and debugging. In the
next section, I describe my research questions, the data collected to
facilitate answering them, and my overall dissertation progress.

2 RESEARCH METHOD

I propose the following thesis: Continuous feedback on the program-
ming process will help improve student programming behaviors, and
improved behaviors will lead to improved project outcomes.

For the motivating studies in [6] and [14], data was collected
in the form of Web-CAT submissions. While Web-CAT’s model of
multiple submissions gives us a rough idea of the project’s trajectory
over time, submission level data is considered the least granular
form of student activity data [7]. To assess incremental development
and testing, and to address the research questions posed below,
we would need to collect data during development, rather than at
submission time.

To this end, we built DevEventTracker [10], an Eclipse plugin that
collects event-level data for executions, compilations, file saves, line-
level edits, to use terminology from [7]. It also captures periodic Git
snapshots. Coupled with Web-CAT submission data, this provides
for more robust analysis of a student’s programming process. We
use these data to address the research questions described below.


https://doi.org/10.1145/3291279.3339429
https://doi.org/10.1145/3291279.3339429

ICER ’19, August 12-14, 2019, Toronto, ON, Canada

ROQ 1. To what extent do students procrastinate on programming
projects? How does this relate with project outcomes?

We developed a measure of central tendency of when code was
produced in terms of days until the project deadline, and the volume
of code produced. We calculated this metric using DevEventTracker
for four large programming assignments [9], and found that: 1) Most
students tended to do work < 10 days before the deadline, even
though they were given 3 to 4 weeks to work on projects; 2) Students
who tended to work earlier tended to produce more semantically
correct implementations, and had earlier final submission times;
and 3) There was no difference in total time spent on projects
between early and late workers.

These findings served as confirmation of intuitive expectations of
the effects of procrastination on project outcomes. For further eval-
uation, we interviewed students about their programming habits
and compared their responses with our quantitative measurements
of their behaviors [10].

RQ 2. How much do students engage with testing throughout the
project lifecycle? How does this relate with project out-
comes?

Using static analysis of Git snapshots captured by DevEventTracker,
we measured students’ levels of engagement with test writing on
the entire project, in individual work sessions, and for individual
methods in their projects [11]. We found that 1) Students do not tend
to spread out their testing effort over work sessions; 2) Students
who write more tests each time they work on their projects tend
to produce more semantically correct programs and stronger test
suites (in terms of object branch coverage); and 3) Writing tests first
or last was not associated with better or worse project outcomes.

RQ 3. How does regular and adaptive feedback on programming
behaviors like time management and testing impact behav-
iors and project outcomes?

With these quantified behaviors and their empirically determined
relationships with project outcomes in hand, I plan to design and
deploy interventions for students who are in danger from straying
from best practices. This can be done ‘on demand’ in the form
of a learning dashboard, or with periodic or intelligently timed
notifications through email. Further investigation is required to
determine what kind of impact these interventions might have. I
am encouraged by previous work ([14]) that was able to show a
causal relationship between adaptive emails and reduced rates of
late submissions.

I am currently working on this research question, and I plan to
have interventions in place during the Summer and Fall offerings
of our Data Structures & Algorithms course.

3 CONTRIBUTION

Assessing incremental development is a non-trivial problem. A pri-
mary concern is that there is no readily available ‘ground-truth’
against which we can test our calculated measures. To address
this, we validate our models against a number of project outcomes
like correctness, time spent on the project, and whether or not the
project was submitted on time, and against student testimonials.
Regular interventions based on our validated models of the pro-
gramming process might help keep students on track to complete

Ayaan M. Kazerouni

assignments and follow best practices. The students we study are
working on large and complex assignments, and are typically only
two or three semesters removed from professionals entering the
workforce. This work could easily be applied in an industrial set-
ting. A primary vision of this research is to deploy an end-to-end
pipeline that receives an incoming event stream and responds with
timely and effective feedback to the developer.

REFERENCES

[1] Moritz Beller. 2018. Toward an Empirical Theory of Feedback-Driven Develop-
ment. In Proceedings of the 40th International Conference on Software Engineering
- ICSE ’18. 503-505. https://doi.org/10.1145/3183440.3190332
Kevin Buffardi and Stephen H. Edwards. 2014. A formative study of influences on
student testing behaviors. In Proceedings of the 45th ACM Technical Symposium
on Computer Science Education - SIGCSE ’14. 597-602. https://doi.org/10.1145/
2538862.2538982
[3] Adam Scott Carter and Christopher David Hundhausen. 2017. Using Program-
ming Process Data to Detect Differences in Students’ Patterns of Programming.
In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education - SIGCSE °17.105-110. https://doi.org/10.1145/3017680.3017785
[4] Stephen H Edwards. 2003. Improving student performance by evaluating how
well students test their own programs. Journal on Educational Resources in
Computing 3, 3 (2003), 1-24. https://doi.org/10.1145/1029994.1029995
Stephen H Edwards and Manuel Perez-Quinones. 2008. Web-CAT: automatically
grading programming assignments. In ITiCSE 08 Proceedings of the 13th annual
conference on Innovation and technology in computer science education, Vol. 3.
60558-60558. https://doi.org/10.1145/1597849.1384371
Stephen H Edwards, Jason Snyder, Manuel A. Pérez-Quifiones, Anthony All-
evato, Dongkwan Kim, and Betsy Tretola. 2009. Comparing effective and in-
effective behaviors of student programmers. In Proceedings of the fifth inter-
national workshop on Computing education research workshop - ICER 09. 3-14.
https://doi.org/10.1145/1584322.1584325
Petri Thantola, Matthew Butler, Stephen H Edwards, Virginia Tech, Ari Korhonen,
Andrew Petersen, Kelly Rivers, Miguel Angel Rubio, Judy Sheard, Jaime Spacco,
Claudia Szabo, and Daniel Toll. 2015. Educational Data Mining and Learning
Analytics in Programming : Literature Review and Case Studies. In Proceedings
of the 2015 ITiCSE on Working Group Reports. 41-63. https://doi.org/10.1145/
2858796.2858798
Edward L. Jones and Edward L. 2000. Software testing in the computer science
curriculum - a holistic approach. In Proceedings of the Australasian conference on
Computing education - ACSE "00. 153-157. https://doi.org/10.1145/359369.359392
[9] Ayaan M Kazerouni, Stephen H Edwards, T. Simin Hall, and Clifford A Shaffer.
2017. DevEventTracker: Tracking Development Events to Assess Incremental
Development and Procrastination. In Proceedings of the 2017 ACM Conference
on Innovation and Technology in Computer Science Education. 104-109. https:
//doi.org/10.1145/3059009.3059050
Ayaan M Kazerouni, Stephen H Edwards, and Clifford A Shaffer. 2017. Quantify-
ing Incremental Development Practices and Their Relationship to Procrastination.
In International Computing Education Research Conference (ICER) 2017. 191-199.
https://doi.org/10.1145/3105726.3106180
Ayaan M. Kazerouni, Clifford A. Shaffer, Stephen H. Edwards, and Francisco
Servant. 2019. Assessing Incremental Testing Practices and Their Impact on
Project Outcomes. In Proceedings of the 50th ACM Technical Symposium on
Computer Science Education (SIGCSE ’19). ACM, New York, NY, USA, 407-413.
https://doi.org/10.1145/3287324.3287366
[12] Dastyni Loksa and Andrew Jensen Ko. 2016. The Role of Self-Regulation in Pro-
gramming Problem Solving Process and Success. In Proceedings of the 2016 ACM
Conference on International Computing Education Research, ICER 2016, Melbourne,
VIC, Australia, September 8-12, 2016. 83-91. https://doi.org/10.1145/2960310.
2960334
[13] Dastyni Loksa, Andrew Jensen Ko, Will Jernigan, Alannah Oleson, Christopher J.
Mendez, and Margaret M. Burnett. 2016. Programming, Problem Solving, and Self-
Awareness: Effects of Explicit Guidance. In Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems, San Jose, CA, USA, May 7-12, 2016.
1449-1461. https://doi.org/10.1145/2858036.2858252
Joshua Martin, Stephen H Edwards, and Clifford A Shaffer. 2015. The Ef-
fects of Procrastination Interventions on Programming Project Success. In
Proceedings of the Eleventh Annual International Conference on International
Computing Education Research (ICER ’15). ACM, New York, NY, USA, 3-11.
https://doi.org/10.1145/2787622.2787730
Jaime Spacco and William Pugh. 2006. Helping students appreciate test-driven
development (TDD). In Companion to the 21st ACM SIGPLAN conference on Object-
oriented programming systems, languages, and applications - OOPSLA *06. 907.
https://doi.org/10.1145/1176617.1176743

[2

[5

l6

—_
)

—
&

[10

[11

(14

[15


https://doi.org/10.1145/3183440.3190332
https://doi.org/10.1145/2538862.2538982
https://doi.org/10.1145/2538862.2538982
https://doi.org/10.1145/3017680.3017785
https://doi.org/10.1145/1029994.1029995
https://doi.org/10.1145/1597849.1384371
https://doi.org/10.1145/1584322.1584325
https://doi.org/10.1145/2858796.2858798
https://doi.org/10.1145/2858796.2858798
https://doi.org/10.1145/359369.359392
https://doi.org/10.1145/3059009.3059050
https://doi.org/10.1145/3059009.3059050
https://doi.org/10.1145/3105726.3106180
https://doi.org/10.1145/3287324.3287366
https://doi.org/10.1145/2960310.2960334
https://doi.org/10.1145/2960310.2960334
https://doi.org/10.1145/2858036.2858252
https://doi.org/10.1145/2787622.2787730
https://doi.org/10.1145/1176617.1176743

	Abstract
	1 Background and Motivation
	2 Research Method
	3 Contribution
	References

