
The Relationship Between Voluntary Practice of Short
Programming Exercises and Exam Performance

Stephen H. Edwards, Krishnan P. Murali, and Ayaan M. Kazerouni
Virginia Tech, Department of Computer Science

Blacksburg, VA
edwards@cs.vt.edu,metarus208@gmail.com,ayaan@vt.edu

ABSTRACT
Learning to program can be challenging. Many instructors use
drill-and-practice strategies to help students develop basic program-
ming techniques and improve their confidence. Online systems that
provide short programming exercises with immediate, automated
feedback are seeing more frequent use in this regard. However, the
relationship between practicing with short programming exercises
and performance on larger programming assignments or exams are
unclear. This paper describes an evaluation of short programming
questions in the context of a CS1 course where they were used
on both homework assignments, for practice and learning, and on
exams, for assessing individual performance. The open-source drill-
and-practice system used here provides for full feedback during
practice exercises. During exams, it allows limiting feedback to com-
piler errors and to a very small number of example inputs shown
in the question, instead of the more complete feedback received
during practice. Using data collected from 200 students in a CS1
course, we examine the relationship between voluntary practice
on short exercises and subsequent performance on exams, while
using an early exam as a control for individual differences includ-
ing ability level. Results indicate that, after controlling for ability,
voluntary practice does contribute to improved performance on
exams, but that motivation to improve may also be important.

CCS CONCEPTS
• Social and professional topics→ Computer science educa-
tion;CS1; Student assessment; •Applied computing→ Inter-
active learning environments; Computer-managed instruction.

KEYWORDS
programming exercises; homework; coding; skill development; prac-
tice; exam
ACM Reference Format:
Stephen H. Edwards, Krishnan P. Murali, and AyaanM. Kazerouni. 2019. The
Relationship Between Voluntary Practice of Short Programming Exercises
and Exam Performance. In ACM Global Computing Education Conference
2019 (CompEd ’19), May 17–19, 2019, Chengdu,Sichuan, China. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3300115.3309525

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CompEd ’19, May 17–19, 2019, Chengdu,Sichuan, China
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6259-7/19/05. . . $15.00
https://doi.org/10.1145/3300115.3309525

1 INTRODUCTION
A number of drill-and-practice tools have been developed to help
students build their skills with basic programming techniques while
improving their programming confidence. Despite the presence of
some experimental research on the impact of small programming
exercises [10, 15], many tools have not been evaluated for impact,
particularly in the face of the various choices instructors can make
about how to employ them in class. This paper explores the question
of whether voluntary practice on small programming questions af-
fects student performance, as measured by summative exam scores.
While it seems obvious that practice would help, one significant
issue is that in a voluntary practice situation, the students who
choose to practice are completely self-selected. Thus, it is difficult
to separate out any potential gains due to practice from other in-
dividual traits that may lead them to choose to practice, and that
might also lead to improved performance.

This research was conducted using CodeWorkout [6], an online
drill-and-practice system designed to provide small-scale practice
assignments in the contexts of both individual learning, and learn-
ing in the CS classroom. It is a completely online and open system
and is not limited to short single-method programming questions
but is capable of supporting different kinds of questions, including
multiple choice (both forced choice and multiple answer), coding
by filling in the blanks, using arbitrary objects (lists, maps, or even
instructor-defined classes) instead of only primitives, writing collec-
tions of methods or an entire class (instead of just single functions),
multi-part questions that include multiple prompts, and “find and
fix the bug” style questions where students are given a code imple-
mentation containing one or more errors to repair.

In this paper we build on the work presented in [6] by reporting
on a study of the use of short programming exercises in a CS1
course, including both required exercises completed for credit, and
optional ungraded practice exercises. Using one course exam to
estimate student academic ability before practice is available, and
a second to assess performance afterward, we find that opting to
practice non-graded exercises is associated with a statistically sig-
nificant increase in performance, independently of student ability.
In contrast, scores on the first exam were not a strong predictor of
the choice to practice, indicating that this is not simply an issue of
"strong students" performing better on multiple tasks, and choosing
to practice simply because they are higher performers.

Section 2 discusses related work and Section 3 gives a brief
summary of CodeWorkout. Section 4 describes the study’s subjects,
method, data, and analysis used to explore student practice.

https://doi.org/10.1145/3300115.3309525
https://doi.org/10.1145/3300115.3309525

2 RELATEDWORK
Coding systems have begun to emerge specifically to support prac-
tice at programming. Instead of questions, these systems ask stu-
dents to solve problem descriptions through code. CodingBat [14]
(formerly JavaBat) offers a collection of small programming prob-
lems and now also supports instructor-contributed problems. Cod-
ingBat takes advantage of test cases to evaluate the correctness of
students’ code. CodeWrite [5] similarly evaluates student code, but
specifically holds students responsible for writing exercises and
their respective test cases.

When students practice the exercises in either system, the only
feedback they receive is whether each test case passed or failed.
Identifying the failed test cases help students revise their solutions.
However, by exposing the test cases, the systems no longer require
students to think critically about what situations their code needs
to consider. Instead, the feedback of failed/passed test cases isolates
a path-of-least-resistance to the solution. The purpose of drill-and-
practice is to learn problem solving. Therefore, it would be more
beneficial to provide students with guidance rather than just making
the solution easier to recognize.

Estey et al. developed BitFit [11] to provide a platform for CS 1
students to engage in voluntary programming practice. The practice
was voluntary because usage of the system did not contribute to
course grades. Using log data from the system, Estey et al. were able
to explore the relationship between this voluntary practice and final
exam performance [10]. Analysis showed negative correlations be-
tween the number of hints requested and final exam performance:
low-scoring students requested more hints than mid-scoring stu-
dents, who requested more hints than high-scoring students. There
was no relationship observed between time spent practicing and
final exam performance.

Spacco et. al developed the online coding practice tool Cloud-
Coder [13], which was part of the inspiration for CodeWorkout.
Using usage data from several universities [15], analysis showed
that the number of programming sessions in CloudCoder was asso-
ciated with higher performance on exercises. The study also found
that the number of exercises completed and attempted, and the per-
centage of exercises completed were weakly correlated with final
exam performance. Correlations with exam performance were even
weaker when practice was optional (R2 = 0.060–0.138) compared to
required (R2 = 0.149–0.295).

Neither [10] nor [15] describe the use of controls for individual
differences, or any analytical approach to differentiate between
“strong” and “weak” students in their analyses. As a result, cor-
relations might be explained by an uncontrolled individual trait
(such as academic strength, prior experience, good study habits,
etc.). For example, stronger students who perform well on exams
might simply be choosing to practice more because they are higher
performers (or might opt out of voluntary practice because they are
confident in their abilities). That is, students’ tendency to practice
and their exam performance might both be results of some other
unaccounted for effect related to their ability. This makes the re-
ported correlations harder to interpret. To account for this in our
analysis (Section 4), we use an early exam as a proxy for student
ability, and then investigate the effect of voluntary code writing
practice on later exam performance.

Related to code writing exercises, researchers have studied the
effectiveness of using Parsons problems for novice programming
practice [7, 8]. In [8], Ericson et al. compared students who practiced
code-writing, code-fixing, and Parsons problems, and found no
differences among the groups in terms of learning performance or
cognitive load. A subsequent study used a system with adaptive
Parsons problems [7] – problems provided implicit hints when
asked for, and had their difficulties adjusted based on the student’s
performance on the previous problem. The study confirmed that
Parsons problems (adaptive and non-adaptive) are just as effective
as code-writing exercises in terms of learning gains based on a pre-
and post-test. Both studies found that Parsons problems (adaptive
and non-adaptive) took less time than code-writing exercises. In
our study, we consider a mixture of code-writing and multiple-
choice questions, and we do not consider the time taken to complete
exercises for reasons described in Section 4.

Perhaps the most common and versatile types of practice sys-
tems are those that support free response (FR) and multiple-choice
questions (MCQ). Since neither question format is domain-specific,
these systems have been adapted in a variety of different fields.
However, the versatility of this format also introduces limitations.
The developers of StudySieve confirmed that FR answers are dif-
ficult to evaluate automatically and consequently had to rely on
students to provide feedback [12]. MCQs suffer from the opposite
problem: answers are constrained to only a few options so instead
it is a challenge to write questions that will evaluate non-trivial
knowledge [1]. Furthermore, this broad approach does not lend
itself well to providing assistance to support learning specific skills.
Despite the shortcomings with its MCQ format, PeerWise takes a
novel approach to developing content [2]. PeerWise concentrates
on the benefits of peer assessment by allowing students to write
questions [3]. Additionally, students review each others’ questions
and write evaluative feedback. However, Denny identifies a need
for external motivators for students to contribute content [4]. While
writing and evaluating questions can activate higher order thinking
skills, the degree to which these activities constructively contribute
to the drill-and-practice environment itself is unknown.

3 CODEWORKOUT
CodeWorkout is a completely online and open drill-and-practice
system for all those who are interested in teaching programming to
their students. For a complete description of its design and features,
refer to [6]. CodeWorkout is not limited to short single-method
programming questions but is capable of supporting different kinds
of questions, including multiple choice (both forced choice and
multiple answer) and coding by filling in the blanks. Exercises are
available to be either directly used in the public practice area or to be
organized into an assignment. The exercise model is polymorphic:
an exercise can be of different types like multiple-choice or coding;
they can also consist of multiple parts, allowing for a richer variety
of questions.

In addition to programming homework assignments, CodeWork-
out is designed to fully support classroom use by instructors who
wish to use graded assignments in exam-like situations. In these
situations, instructors may choose to impose time limits and limit
feedback hints from failed test cases. For example, they may limit

feedback to compiler errors, or provide hints about only a few
situations under test.

At the same time, it also provides a completely open “free prac-
tice” area where anyone, whether enrolled in a course or not (or
even signed in or not), can browse and practice a large collection
of publicly available exercises–a concept successfully pioneered by
CodingBat. CodeWorkout provides full support for both uses. The
analysis in this paper focuses on the second use case, i.e., voluntary
practice by students in a CS 1 course over two semesters at our
university.

4 EFFECTS OF PRACTICE
While most educators already acknowledge the value of practice,
it is important to examine the impact of such practice on student
performance, as well as to capture experiences in using tools that
contribute to this impact. Here, we describe out experiences us-
ing CodeWorkout in class, together with a study of how it affects
student performance as measured by exam scores.

Ericsson [9] summarizes much of the historical research on prac-
tice to improve performance and states the critical aspects necessary
for practice to be effective:

The most cited condition concerns the subjects’
motivation to attend to the task and exert effort
to improve their performance. In addition, the
design of the task should take into account the
preexisting knowledge of the learners so that
the task can be correctly understood after a
brief period of instruction. The subjects should
receive immediate informative feedback and
knowledge of results of their performance. The
subjects should repeatedly perform the same
or similar tasks.

When these conditions are met, practice im-
proves accuracy and speed of performance on
cognitive, perceptual, and motor tasks.

CodeWorkout has been designed to provide immediate feedback
to students as they practice, and to allow them to practice on a
series of similar tasks. It also provides instructors with the ability to
design specific tasks and arrange them into assignments that guide
the students’ practice activities. This fits directly into Ericsson’s
definition of deliberate practice, where: “the teacher designs practice
activities that the individual can engage in between meetings with
the teacher,” where the activities are chosen by the teacher with
the aim of maximizing improvement [9].

Here, our primary question is whether optional (voluntary) prac-
tice has measurable impact on student performance, independent of
ability level. In the context of deliberate practice, the exercises are
still provided by a teacher with the aim of improving performance.
However, the “voluntary” choice by the student directly relates to
the student’s “motivation to attend to the task and exert effort to
improve.” We hypothesize that students who have this motivation
will opt to complete voluntary practice assignments and benefit
more, while students who do not opt to participate in voluntary
practice will not see the same benefits.

4.1 Population
CodeWorkout has been used in two courses each semester at Vir-
ginia Tech during the 2015-2016 academic year, including use by
372 students in a CS1 course during Fall 2015, and 378 students in
the same course in Spring 2016. The study reported here focuses
on the Spring 2016 semester, where 200 students in CS1 consented
to allowing their data to be used for research purposes. During
that semester, CodeWorkout was used for graded homework assign-
ments, for optional practice assignments, and for coding questions
on in-class proctored and timed examinations. Students also had
larger program assignments as well as homework assignments that
did not involve programming in this course.

4.2 Method
The study encompassed four separate phases. First, students began
working with automatically graded short practice exercises in re-
quired homework assignments during a training phase. Next, one
third of the way through the course an exam was given that was
used as a form of pretest to control for individual factors differing
between students. Then students engaged in a practice phase where
they participated in both required and optional practice. Finally,
two thirds of the way through the course students took a second
exam as a post-test where effects from practice were demonstrated.

4.2.1 Training. During the first 5 weeks of the course, CodeWork-
out was used by students during homework assignments to practice
skills solving basic programming problems. Students were required
to complete 20 graded exercises. This arrangement ensures that
prior to any exams, students already had exposure to CodeWorkout
and were familiar with its interface and how to complete questions
online. During graded homework assignments, students had unlim-
ited attempts and unlimited time to practice, and were shown the
maximum amount of feedback on each exercise–that is, they saw
the results of all software tests applied to their answers, and for
nearly all software tests, they also saw the full details of test values
and expected results. Only a small number of software tests did not
expose the details of what was being tested.

In this situation, most students worked on their solutions until
they received a perfect score on an exercise. No penalty was associ-
ated with this approach to practicing. Average scores for graded
homework were extremely high (96–100%), since most students re-
ceived full marks on every exercise after sufficient effort. This raises
a problem, however, in that scores on such an assignment may be
poor predictors, since nearly all students received the same final
score, regardless of ability. Only students who allowed themselves
insufficient time, or who gave up on exercises without seeking
coaching or assistance from the course staff, or who opted not
to participate in the assignment at all, received less than perfect
scores.

4.2.2 Pretest. One third of the way through the academic term,
students took a regularly scheduled exam covering the material
learned so far. The exam was held in class and limited to 50 minutes.
The test consisted of a number of multiple choice or short answer
questions given as an online quiz through the course’s learning
management system (worth 72% of the exam grade), together with a
pair of code writing exercises given using CodeWorkout (worth 28%

Table 1: CodeWorkout assignments in CS1

Assignment Exercises Students Avg. attempts per exercise Avg. score
Training phase

Required Homework A 10 197 1.4 100%
Required Homework B 10 176 6.7 98.6%

Pretest phase
Exam 1 2 198 7.7 84.8%

Practice phase
Required Homework C 5 195 9.9 96.0%
Required Homework D 10 195 9.0 93.3%
Voluntary Assignment 10 155 7.0 64.9%

Post-test phase
Exam 2 2 190 11.3 63.7%

of the exam grade). Students saw the online test as a single online
activity, with direct links to the CodeWorkout exercises embedded
among the other questions of the exam.

During the exam, however, students completed code writing
questions under different constraints than during homework. Stu-
dents had hard time limits and were expected to complete their
code writing exercises along with all of the non-coding questions
that were also on the exam. In addition, CodeWorkout did not
give full feedback to students during the exam. Instead, exercises
showed compilation errors and limited test results to only three
provided examples that were part of the question prompt, keeping
all other testing results hidden. Students were expected to judge for
themselves whether their answers behaved as intended. Although
exercises included an extensive set of tests to assess the correctness
of student answers, they could not see the results for these tests or
the numeric scores for individual exercises during the exam. Since
student work is automatically saved on CodeWorkout each time
they check their work, students were free to work on other parts
of the exam and come back to review their work, complete with
the most recent results on the limited set of examples, whenever
necessary until the exam ended.

One critical question of concern is whether optional practice
has measurable impact on student performance, independent of
ability level. One would expect that practice does have benefits, but
one would also expect that more capable students who are already
operating at a high level of skill may also be more likely to opt to
practice. To address this issue, we used Exam 1 scores as a proxy
measure for student ability. It served as a form of pretest to capture
individual factors that affect performance on an exam, rather than
as a pretest measuring specific knowledge content. Since Exam 1
covered different content (from the first one third of the course)
than Exam 2 (the post-test, which covered content from the second
third), we could not directly use differences between the two exam
scores as a measure of learning gains. However, by using Exam 1 as
a proxy for ability (or other individual differences that significantly
affect exam performance), we could employ it as an independent
variable in testing hypotheses about impacts on Exam 2 scores.

4.2.3 Practice. During the middle third of the course, students
completed two more required assignments consisting of short pro-
gramming questions on CodeWorkout. These covered the basic

knowledge content tested on the second exam that serves as the
post-test. The two required assignments contained 15 problems.

In addition, prior to the second exam, students were given a
purely optional, ungraded practice assignment (the Voluntary As-
signment) on CodeWorkout consisting of 10 practice problems. This
optional practice assignment is the primary focus of this study. The
Voluntary Assignment occurred after Exam 1, but prior to Exam 2.
Because it was optional, only some of the students elected to at-
tempt it—81.6% of students taking Exam 2 opted to attempt at least
one exercise on the practice assignment, while just 35.3% percent
attempted every exercise in the practice assignment at least once.

Another important issue is how best to characterize participa-
tion in the optional Voluntary Assignment that occurred between
the two tests. Since students were able to continue working on
exercises until they mastered them, absolute scores on exercises
have questionable value as predictors of outcomes. While other
researchers have used time needed to complete an exercise, that
measure is also suspect. While some students may successfully
complete an exercise in a small amount of time, what does it mean
when a different student takes a longer amount of time to achieve
the same result? Are longer times indicative of lower skill, if both
students achieve full marks on the same exercise? Or are longer
times indicative of more time on task and more effort practicing?
A more extensive discussion of time effects appears in [15].

Here, because we are interested in the effects of voluntary prac-
tice, we divided the subjects into three groups: the No-Practice
group (18.4% of students) included all students who did not attempt
any exercises on the Voluntary Assignment at all; the Some-Practice
group (46.3%) attempted some but not all Voluntary Assignment
exercises; and the Full-Practice group (35.3% of students) attempted
every exercise in the Voluntary Assignment at least once. This par-
titioning is based on Ericsson’s [9] observation of the importance
of the student’s motivation to “exert effort to improve” through
practice. The student’s actions regarding how much of the optional
practice assignment to complete is the direct measure that is most
closely associated with their motivation to invest in practice.

4.2.4 Post-test. Finally, students took Exam 2 two-thirds of the way
through the semester, following the same structure as Exam 1 with
both multiple-choice and code-writing questions. Measures of both
the multiple-choice question performance and the code-writing

Figure 1: Code writing scores on Exam 2 by group (Full-
Practice is significantly different from other groups).

question performance were analyzed independently to determine
if optional practice effects were present. Table 1 shows that Exam
2 scores were lower than Exam 1, which is typical for the course
and is due to the larger amount of content knowledge and skills
expected two-thirds of the way through the course.

5 RESULTS
Table 1 summarizes CodeWorkout’s usage across the four phases
of this study. The training phase includes required assignments
that ensure a basic level of familiarity with the tool and the style of
questions; the first exam serves as a baseline for assessing individ-
ual ability; the practice phase includes the Voluntary Assignment
that is the focus of the study; and the second exam serves as the
observation of effects of practice.

5.1 Effects on Exam Code Writing Questions
Since both exams included code writing questions, which presum-
ably require skills similar to those appearing in the practice ex-
ercises, as well as other styles of questions that may test other
knowledge or skills covered in the course, we can consider the two
types of questions separately. On code writing questions answered
on CodeWorkout, Full-Practice students earned a mean score of
76.5%, compared to 61.5% for No-Practice students (s.d. = 31.8%) and
54.7% for Some-Practice students (s.d. = 29.7%). Figure 1 illustrates
the differences and 95% confidence intervals.

By considering both Exam 1 scores and practice group as inde-
pendent variables, as well as the cross interaction between them,
an analysis of variance indicates a significant effect on the code
writing scores in Exam 2 (df = 189, F= 20.0,p< 0.0001). Separate
effect tests for the two variables indicate both Exam 1 scores (F
= 21.3, p < 0.0001) and practice group (F = 8.7, p = 0.0002) are
significant, but there is no significant interaction between them (F
= 0.4, p = 0.69). The differences in least-squares means indicate
that Full-Practice is significantly different than the other two groups
(t = 1.97, p = 0.049), but No-Practice and Some-Practice were not
significantly different.

Figure 2: Multiple choice scores on Exam 2 by group (no sig-
nificant difference).

From this analysis, it seems that students who elected to prac-
tice some, but not all, of the practice exercises did not perform
significantly differently than those who opted not to practice at
all. If anything, their scores were lower on all measures (but not
significantly). Instead, only students who at least attempted all of
the practice problems saw significant performance improvements.
Most importantly, this improvement is associated with choosing to
practice voluntarily, independent of student ability (as measured
on Test 1).

To determine effect sizes on code writing scores, partial η2 values
were computed for both the Exam 1 effect and the practice group
effect. The effect size for Exam 1 scores is η2 = 0.264, indicating
that approximately 26.4% of the variance in Exam 2 code writing
performance is accounted for by the student’s earlier Exam 1 score,
which is considered a large effect size. This suggests that some
individual traits (such as student ability, prior experience, enjoy-
ment of coding, etc.) may play a role in increasing exam scores
independently of voluntary practice. The effect size for the practice
group is η2 = 0.143, indicating that approximately 14.3% of the
variance in Exam 2 code writing performance is associated with
whether or not the student chooses to practice all practice problems
on the Voluntary Assignment, which is also considered a large effect
size. As can be seen from the means, Cohen’s d for the Full-Practice
group on code writing exercises in Exam 2 is 0.69.

5.2 Effects on Exam Multiple Choice Questions
On multiple choice and short answer questions, Full-Practice stu-
dents earned 63.6%, compared to No-Practice students at 58.6% and
Some-Practice students at 57.6% (s.d. = 20.5%).

We can also consider the effect on the multiple-choice portion
of Exam 2, which does not involve code writing skills directly.
Again by considering both Exam 1 scores and practice group as
independent variables, as well as the cross interaction between
them, an analysis of variance indicates a significant effect on the
multiple-choice scores in Exam 2 (df = 190, F= 14.3,p< 0.0001).
Separate effect tests for the two variables indicate that Exam 1

score (F = 18.2, p < 0.0001) is significant while practice group (F
= 0.12, p = 0.89) is not. There is no significant interaction between
them (F = 0.10, p = 0.90).

To determine effect sizes on multiple-choice scores, partial η2
values were computed for the Exam 1 effect. The effect size for
Exam 1 scores is η2 = 0.265, which is considered a large effect size.
Cohen’s d for Full-Practice on the non-code-writing portion of Exam
2 is 0.28. In addition to being much smaller than the difference on
codewriting exercises, there is no significant evidence of differences
on code writing questions between the practice groups on the
multiple-choice and short answer portion of Exam 2.

5.3 Threats to Validity
One major consideration in this study is the potential threat due
to individual traits that may affect the choice to opt for voluntary
practice. Such individual traits may introduce a form of selection
bias that can affect the inferences drawn from correlations between
voluntary practice and exam performance. In this study, we used
Exam 1 as an indirect measure of individual differences that affect
exam performance that could be included in the analysis to see
whether the choice to perform additional practice shows an inde-
pendent effect on exam performance. Greater explanatory power
would come from explicitly measuring the most likely individual
differences so they could be independently analyzed, but that is
beyond the scope of this paper. Still, controlling for individual dif-
ferences is an important step in establishing whether voluntary
practice itself has an independent effect.

At the same time, while the gains experienced by Full-Practice
students are associated with practice, this study does not provide
evidence for the cause of the improvement. Instead, it is clear that
the practice alone is insufficient, since students who practiced some,
but not all, exercises did not perform significantly differently on any
measure from students who participated in no voluntary practice
at all. Instead, it appears that the motivation that students have
to engage in deliberate practice is also critical, as noted by other
researchers and summarized by Ericsson.

Further, this study includes both required and voluntary practice.
As shown using CloudCoder [15], requiring short programming
exercises is more strongly associated with improvements in exam
performance than voluntary practice. While lack of controls on
individual differences in that study requires caution, its results sug-
gest that examining the effects of required practice vs. optional
practice is warranted. In addition, the CloudCoder study suggests
that larger numbers of practice exercises offered in more assign-
ments may offer more impact. The results shown here are likely
to be different if more (or fewer) required assignments using more
(or fewer) exercises were included, or if a larger number of vol-
untary exercises were offered, perhaps at more points throughout
the course. Additional research is needed to understand the effects
of required vs. optional assignments and choices about number of
practice opportunities designed by the instructor.

Finally, throughout the short programming exercise community,
quality of exercises is a known issue that constantly requires at-
tention. This study tacitly assumes that the exercises employed on
practice assignments and on exams are effective. However, given
the 50 or so exercises used in this study, some degree of variation is

quality is unavoidable. According to the theory of deliberate prac-
tice, exercises need to be carefully designed by an expert teacher
or coach, and ideally are tailored to the ability level of the student.
Potentially, different gains could be achieved with a different set of
practice exercises, which is not taken into account in this study.

6 CONCLUSION
CodeWorkout is a new drill-and-practice system designed to pro-
vide a larger range of opportunities for students to practice basic
coding skills. Inspired by predecessors, it design aims to combine
the best strengths of prior work with new strategies for enhancing
classroom support and supporting student practice. In the experi-
ences reported in this paper, CodeWorkout was used quite success-
fully in an introductory course with a large number of students.
Students reacted positively and appear to see clear benefits to using
this style of exercise practice to develop their skills.

We also conducted an evaluation of how voluntary practice
affects student performance, as measured by exam scores. Never-
theless, there are still many research questions needing further
exploration. In the future, we plan to continue refining CodeWork-
out to support such investigations. An important part of this effort
is the use of item response theory to characterize the performance
of questions and the identification of questions that may need revi-
sion or editorial attention. At the same time, IRT offers a deeper,
more data-driven way of estimating student ability. By modeling
both student ability and question performance, it is possible to
intelligently recommend new problems for practice that are closer
to the student’s zone of proximal development. The addition of
social features and Stack Overflow-inspired Q&A discussions for
questions offers a unique strategy to try to help students who get
stuck. Similarly, prompting successful students to offer hints on
how to tackle questions they have completed, together with analy-
sis of when those hints help later students get unstuck, offer new
strategies for engaging students in the community of users, instead
of encouraging them to pursue individual practice in isolation. A
consolidated approach to these issues is more likely to meet the
needs of current and future educators.

Still, the current evaluation does provide some evidence for how
voluntary practice affects student exam performance. By using an
exam earlier in the course as a proxy for student ability level, we
compared how students who practiced all practice problems in
an optional practice assignment performed compared to students
who did not, while accounting for ability level. While ability level
explained a larger amount of variance in Exam 2 scores, improved
performance on Exam 2 code writing questions was significantly
associated with optional practice, independently of student ability.
Further, it is clear that practicing all of the optional exercises instead
of just some was also important—a behavior we hypothesize as
being associated with a student’s intrinsic motivation to exert effort
to improve, which is a critical component for deliberate practice
to be effective. This gives some evidence that the basic intuition
of educators—that practice helps, when students engage in it—is
associated with better performance, at least with the skills that
were practiced, and that this affect may be distinguishable from
that of performance gains driven by simple ideas of student ability
or pre-existing skill level.

ACKNOWLEDGMENTS
This work is supported in part by the National Science Foundation
under grant DRL-1740765. Any opinions, findings, conclusions, or
recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the National Science
Foundation.

REFERENCES
[1] Albert Corbett, John Anderson, Art Graesser, Ken Koedinger, and Kurt VanLehn.

1999. Third Generation Computer Tutors: Learn from or Ignore Human Tutors?.
In CHI ’99 Extended Abstracts on Human Factors in Computing Systems (CHI EA
’99). ACM, New York, NY, USA, 85–86. https://doi.org/10.1145/632716.632769

[2] Paul Denny, John Hamer, Andrew Luxton-Reilly, and Helen Purchase. 2008.
PeerWise: Students Sharing Their Multiple Choice Questions. In Proceedings of
the Fourth International Workshop on Computing Education Research (ICER ’08).
ACM, New York, NY, USA, 51–58. https://doi.org/10.1145/1404520.1404526

[3] Paul Denny, Andrew Luxton-Reilly, and John Hamer. 2008. The PeerWise
System of Student Contributed Assessment Questions. In Proceedings of the
Tenth Conference on Australasian Computing Education - Volume 78 (ACE ’08).
Australian Computer Society, Inc., Darlinghurst, Australia, Australia, 69–74.
http://dl.acm.org/citation.cfm?id=1379249.1379255

[4] Paul Denny, Andrew Luxton-Reilly, and John Hamer. 2008. Student Use of the
PeerWise System. In Proceedings of the 13th Annual Conference on Innovation
and Technology in Computer Science Education (ITiCSE ’08). ACM, New York, NY,
USA, 73–77. https://doi.org/10.1145/1384271.1384293

[5] Paul Denny, Andrew Luxton-Reilly, Ewan Tempero, and Jacob Hendrickx. 2011.
CodeWrite: Supporting Student-driven Practice of Java. In Proceedings of the 42Nd
ACM Technical Symposium on Computer Science Education (SIGCSE ’11). ACM,
New York, NY, USA, 471–476. https://doi.org/10.1145/1953163.1953299

[6] Stephen H. Edwards and Krishnan Panamalai Murali. 2017. CodeWorkout: Short
Programming Exercises with Built-in Data Collection. In Proceedings of the 2017
ACM Conference on Innovation and Technology in Computer Science Education
(ITiCSE ’17). ACM, New York, NY, USA, 188–193. https://doi.org/10.1145/3059009.

3059055
[7] Barbara J. Ericson, James D. Foley, and Jochen Rick. 2018. Evaluating the Efficiency

and Effectiveness of Adaptive Parsons Problems. In Proceedings of the 2018 ACM
Conference on International Computing Education Research (ICER ’18). ACM, New
York, NY, USA, 60–68. https://doi.org/10.1145/3230977.3231000

[8] Barbara J. Ericson, Lauren E. Margulieux, and Jochen Rick. 2017. Solving Parsons
Problems Versus Fixing and Writing Code. In Proceedings of the 17th Koli Calling
International Conference on Computing Education Research (Koli Calling ’17). ACM,
New York, NY, USA, 20–29. https://doi.org/10.1145/3141880.3141895

[9] K. Anders Ericsson, Ralf T. Krampe, and Clemens Tesch-RÃűmer. 1993. The Role
of Deliberate Practice in the Acquisition of Expert Performance. Psychological
Review 100, 3 (July 1993), 363–406.

[10] Anthony Estey and Yvonne Coady. 2017. Study Habits, Exam Performance,
and Confidence: How Do Workflow Practices and Self-Efficacy Ratings Align?.
In Proceedings of the 2017 ACM Conference on Innovation and Technology in
Computer Science Education (ITiCSE ’17). ACM, New York, NY, USA, 158–163.
https://doi.org/10.1145/3059009.3059056

[11] Anthony Estey, Anna Russo Kennedy, and Yvonne Coady. 2016. BitFit: If You
Build It, They Will Come!. In Proceedings of the 21st Western Canadian Conference
on Computing Education (WCCCE ’16). ACM, New York, NY, USA, Article 3,
6 pages. https://doi.org/10.1145/2910925.2910944

[12] Andrew Luxton-Reilly, Paul Denny, Beryl Plimmer, and Daniel Bertinshaw. 2011.
Supporting Student-generated Free-response Questions. In Proceedings of the
16th Annual Joint Conference on Innovation and Technology in Computer Science
Education (ITiCSE ’11). ACM, New York, NY, USA, 153–157. https://doi.org/10.
1145/1999747.1999792

[13] Andrei Papancea, Jaime Spacco, and David Hovemeyer. 2013. An Open Platform
for Managing Short Programming Exercises. In Proceedings of the Ninth Annual
International ACM Conference on International Computing Education Research
(ICER ’13). ACM, New York, NY, USA, 47–52. https://doi.org/10.1145/2493394.
2493401

[14] Nick Parlante. [n. d.]. CodingBat. http://codingbat.com/. last accessed 04-06-2016.
[15] Jaime Spacco, Paul Denny, Brad Richards, David Babcock, David Hovemeyer,

James Moscola, and Robert Duvall. 2015. Analyzing Student Work Patterns Using
Programming Exercise Data. In Proceedings of the 46th ACM Technical Symposium
on Computer Science Education (SIGCSE ’15). ACM, New York, NY, USA, 18–23.
https://doi.org/10.1145/2676723.2677297

https://doi.org/10.1145/632716.632769
https://doi.org/10.1145/1404520.1404526
http://dl.acm.org/citation.cfm?id=1379249.1379255
https://doi.org/10.1145/1384271.1384293
https://doi.org/10.1145/1953163.1953299
https://doi.org/10.1145/3059009.3059055
https://doi.org/10.1145/3059009.3059055
https://doi.org/10.1145/3230977.3231000
https://doi.org/10.1145/3141880.3141895
https://doi.org/10.1145/3059009.3059056
https://doi.org/10.1145/2910925.2910944
https://doi.org/10.1145/1999747.1999792
https://doi.org/10.1145/1999747.1999792
https://doi.org/10.1145/2493394.2493401
https://doi.org/10.1145/2493394.2493401
http://codingbat.com/
https://doi.org/10.1145/2676723.2677297

	Abstract
	1 Introduction
	2 Related Work
	3 CodeWorkout
	4 Effects of Practice
	4.1 Population
	4.2 Method

	5 Results
	5.1 Effects on Exam Code Writing Questions
	5.2 Effects on Exam Multiple Choice Questions
	5.3 Threats to Validity

	6 Conclusion
	References

