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ABSTRACT
We present quantitative analyses performed on character-level pro-
gram edit and execution data, collected in a junior-level data struc-
tures and algorithms course. �e goal of this research is to de-
termine whether proposed measures of student behaviors such as
incremental development and procrastination during their program
development process are signi�cantly related to the correctness of
�nal solutions, the time when work is completed, or the total time
spent working on a solution. A dataset of 6.3 million �ne-grained
events collected from each student’s local Eclipse environment is
analyzed, including the edits made and events such as running the
program or executing so�ware tests. We examine four primary met-
rics proposed as part of previous work, and also examine variants
and re�nements that may be more e�ective. We quantify behav-
iors such as working early and o�en, frequency of program and
test executions, and incremental writing of so�ware tests. Projects
where the author had an earlier mean time of edits were more
likely to submit their projects earlier and to earn higher scores for
correctness. Similarly earlier median time of edits to so�ware tests
was also associated with higher correctness scores. No signi�cant
relationships were found with incremental test writing or incremen-
tal checking of work using either interactive program launches or
running of so�ware tests, contrary to expectations. A preliminary
prediction model with 69% accuracy suggests that the underlying
metrics may support early prediction of student success on projects.
Such metrics also can be used to give targeted feedback to help
students improve their development practices.
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1 INTRODUCTION
Every CS student eventually reaches a point in their coursework
where they must begin using good program development practices
if they are going to successfully complete their programming as-
signments. When this happens may depend on the individual’s
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ability or prior experience. For some students, this may happen in a
traditional CS1 or CS2 course. Others successfully pass through CS1
and CS2 without developing good project management practices,
but then reach the limits of undisciplined development in a later
course with larger programming assignments. At our University,
students are required to take a junior-level Data Structures and
Algorithms course, which we will call “CS3”. Unfortunately, it is
typical to see 25-30% of students each semester who either drop this
course, or fail to earn a grade of C or be�er so they can progress to
later courses.

Students in our CS3 course typically complete four signi�cant
programming assignments, each with a 3-4 week life cycle. While
the raw code size of these projects is not hugely greater than those
found in CS2, they are generally considered to be far more di�-
cult. Possible reasons include less sca�olding in terms of design
constraints, signi�cant use of programming techniques such as
recursion, dynamic memory allocation, and pointer manipulation,
and �le-based data access. Typically, these projects involve far more
complicated design choices, and far greater need for a rigorous test-
ing process than projects in earlier classes.

We believe that a lack of good project management skills may be
a key contributing factor to poor outcomes on major programming
projects such as these. Necessary skills include incremental devel-
opment (writing, testing, and debugging small chunks of code at a
time), e�ective time management, and e�ective so�ware testing.
Unfortunately, poor testing ability is common at many US universi-
ties [6, 18], and students o�en display a disinclination to practice
regular testing as they work towards project completion [3].

We believe that changing student behavior in this regard will
require changing the way this material is taught, practiced, and
assessed. Learning any skill requires practice [17]. But without
a mechanism to capture necessary details about each student’s
personal development process (in contrast to outcomes in terms
of successful completion of projects on time), it is not possible to
assess or give feedback on that process.

�e goal of this research is to capture and analyze the infor-
mation needed for interventions related to improved learning of
project management skills. �is requires that we both collect data,
and use it to deduce behavior related to processes such as incre-
mental development, testing, and time management. Eventually,
we seek to “close the loop” by providing feedback in the form of
carefully designed interventions that provide timely and e�ective
guidance. But to accurately assess incremental development and
procrastination, su�cient information about the detailed behavior
of students during the development process is required. �is level
of information is not available if one only examines work students



elect to submit for assessment as they near completion of an as-
signment, even when students are making frequent submissions in
order to determine if their program passes instructor unit tests, as
happens in our programming courses.

In previous work [15], we presented DevEventTracker, a plugin
for the Eclipse Integrated Development Environment (IDE) that
captures programming events in real time as students develop. �e
DevEventTracker plugin is based on the HackyStat project [14].
We employed this plugin to collect data in one semester of our CS
3 course involving 166 students over four assignments, producing
a total of 546 �nal programs. �e result was a dataset of nearly 6.3
million events capturing the details of student editing, compiling,
execution, and testing activities. �ese data were used to calculate
four metrics designed to cover the various dimensions of incremen-
tal development—working early and o�en, incrementally checking
work via either interactive program launches or so�ware test execu-
tion, and incrementally writing so�ware tests. Such metrics allow
instructors to assess aspects of a student’s programming process
and make it possible to provide guidance based on that assessment.

�is work builds on [15], which described DevEventTracker’s
functionality, de�ned the calculation of the four metrics, and per-
formed a preliminary qualitative evaluation of the validity of the
measures using manual inspection of code snapshots, and using
student interviews to compare metrics against student subjective
experience. In this paper, we develop a quantitative evaluation of
the four metrics with respect to three separate outcome measures:

(1) Which metrics are signi�cantly related to project success,
in terms of producing a solution that behaves correctly?

(2) Which metrics are signi�cantly related to �nishing solu-
tions on time?

(3) Which metrics are signi�cantly related to how much time
is spent working?

By examining how the original four metrics relate to these out-
comes, we also develop and evaluate re�nements with the aim of
be�er characterizing intuitive notions of good development prac-
tices and time management practices. By using an analysis of
covariance with repeated measures, we perform within-subjects
comparisons to account for varying performance traits of individual
students. Finally, we consider how these metrics might be used to
produce a predictive model indicating whether students might be
successful on a project vs. struggling.

We begin the discussion in Section 2, which presents related
work on capturing and quantifying the programming process. Our
method is described in Section 3, with the corresponding analysis
in Section 4. Section 5 discusses our results, and their impact is
presented in Section 6.

2 RELATEDWORK
�ere is a sizable body of literature on the modeling and assessment
of the student programming process. Studies done in this area
range in size from a few students working on small assignments
in a controlled environment to several hundred students working
on several projects over the course of a semester or year. �e bulk
of this work focuses on the needs and behaviors of students who
are just learning to program, while our work is focused on more
advanced programmers.

Jadud [12] focuses on modeling the programming process of
novices in the BlueJ programming environment using their compi-
lation behaviors. He uses this information to gain a ‘rough sketch’
of novice programming behavior in the classroom, describing the
errors novices commonly run into, the time they typically spend
programming before re-compiling, and the ways in which they
respond to error messages from the IDE. Jadud also developed the
Error �otient [13], a 0→ 1 metric developed by taking into ac-
count the type, location, and frequency of syntax errors, used to
characterize the novice programming process.

Watson, et al. [20] developed the Watwin Algorithm to score a
student based on their programming process in an introductory
programming course. Speci�cally, the Watwin Algorithm scores
a student based on their ability to resolve a speci�c type of er-
ror, compared to the time taken by their peers. Evaluation of the
score showed it to be a good predictor of performance, and an
improvement from Jadud’s Error �otient.

Blackbox [2] is a perpetual data-collection project that collects
programming process data about Java code wri�en by worldwide
users of the BlueJ IDE—a programming environment designed for
novice programmers. Altadmri and Brown [1] use this dataset to
gain an understanding of the common syntactic and semantic errors
encountered by novice programmers and the times taken to address
them.

More closely related to our work, Carter, et al. model the stu-
dent programming process of CS2-level students using the Normal-
ized Programming State Model (NPSM) [5]. �e NPSM focuses on
knowing the state of the program at key points in the development
process (when the program is being edited, launched, or debugged).
�e NPSM was used to develop predictors and explain variance for
various outcome variables like assignment performance and overall
course performance, making use of a holistic representation of the
programming process as well as sequences of transitions between
states [4].

A signi�cant portion of previous work a�empts to model the
programming process based on compilation (syntactic) errors, se-
mantic errors, or both. �e NPSM models the programming process
in much �ner detail than other work described above, but does not
model incremental development. A�empts have been made to
assess and reward students based on their so�ware testing prac-
tices [6]. However, students are typically scored a�er a signi�cant
portion of work has been done (for example, when they make a
submission to Web-CAT) [7]. �is means that it cannot be used as
the basis for a just-in-time intervention to nudge students back on
track or change their ongoing behavior.

Helminen et al. [9] capture and analyze the programming pro-
cess of students using an in-browser Python editor-and-console
environment in a Web So�ware Development (WSD) course. Data
is collected in the form of ‘interaction traces’. In addition to ex-
ploring syntactic and semantic errors, they explore student testing
behaviors, but focus on ad-hoc testing in the console, rather than
formal unit or functional test writing. �ey also analyze and visual-
ize problem-solving paths taken by students [10]. Backgrounds of
students varied greatly: some had previous experience with both
Python and web programming, and some had li�le prior program-
ming experience. As such, the course seems to be at the CS1 level or
below, though this is not explicitly stated. Some data were collected



from a CS2 course, but the analysis was focused on data from the
WSD course.

�e NPSM work in particular is the most similar to our work dis-
cussed here. NPSM is focused on metrics of state transitions, which
are abstracted from the clickstream. In contrast, our work is focused
on metrics of activity type and dispersion. �at is, we look at how
much time or other de�nition of e�ort is being devoted to various
aspects (solution development, test writing, testing, debugging),
and how that e�ort is dispersed over time. we model the student
programming process with a focus on deducing high-order behav-
ior such as testing, incremental development, and procrastination.
Further, we focus on post-CS2 students working on more complex
projects. As such, our results present potential for application in
professional se�ings as well.

3 METHOD
�e data presented in this paper was obtained by administering
data-collection to three sections of CS3 at Virginia Tech, a junior-
level Data Structures and Algorithms course. Students programmed
in Java using the Eclipse IDE. �e programming projects were
relatively large, with lifecycles typically 3 or 4 weeks long. We
include data from all completed project submissions, including data
from students who might have withdrawn from the course a�er
completing a project. Data from students who did not give consent
for their data to be used (less than 4%) were excluded from the
analysis reported here. According to the points of granularity as
de�ned in [11], our data are a combination of character-level edits,
executions, and submissions. Further information about the data
collection process can be found in [15].

Before undertaking analysis, some preprocessing and �ltering
was necessary to only include data generated while students were
actually working toward project completion. During our qualitative
evaluation, we found that some students tend to open their Eclipse
projects and make some edits several days a�er projects had been
graded and their �nal work had been submi�ed. While there is
educational value to such activities, they are not part of the process
of developing their �nal solution. We excluded these edits from our
analysis since they are clearly not part of the organic development
process for a project, and tend to corrupt the incremental devel-
opment scores due to the large amount of time between project
completion and these a�er-the-fact activities. We also excluded
projects that were worked on for less than 1 hour (that is, projects
started by students but with no meaningful a�empt to �nish).

We use intervals between event timestamps to calculate the time
spent on projects. We break up the project into work sessions that
are separated by at least 1 hour of inactivity, and add up the times
for each work session. �is ensures that time calculations are not
in�ated by long periods of inactivity where no actual work is being
done.

A�er �ltering, the dataset consists of the work of 162 students
working on 545 programming projects turned in to four assign-
ments. Not every student completed every assignment, since some
students dropped the course, and others may have missed an as-
signment for personal reasons. Project correctness was measured
as the percentage of instructor-wri�en so�ware tests used as the
reference for grading correctness in each assignment. We do not
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Figure 1: Distribution of correctness scores.

include bonuses/penalties due to early or late completion, manual
grading criteria, or conformance to coding style standards when
examining correctness. Results for all statistical tests use α = 0.05
to determine signi�cance unless otherwise noted.

To assess program correctness, a key outcome under consider-
ation, we measure the percentage of instructor-wri�en reference
tests that a student’s �nal solution passes. By examining the distri-
bution of correctness scores over the class, there is a clear separation
between students who are able to successfully “solve” a problem
by creating a working solution, and those who create buggy or
incorrect solutions.

Figure 1 shows the distribution of correctness scores. �ere is
a clear trough just under a perfect score, with approximately half
(47%) of the class scoring very close to perfect, and the remainder
(53%) scoring noticeably lower. By choosing a cuto� of 95%, we can
partition the class into projects that have successfully “solved” the
behavior required for an assignment, and those that have imperfect
solutions. As a result, we will examine di�erences in key metrics
between projects that achieve this threshold and those that do not.

4 ANALYSIS
In this section, we analyze the various metrics derived from the
extensive log data collected by DevEventTracker. We investigate
the relationships our metrics have with the key outcome variables
of project correctness, time spent on the project, and time of com-
pletion. �e analyses are presented as a method of evaluating our
metrics’ relationships with various aspects of the programming
process, particularly those that would be a�ected by the practice of
incremental development.

4.1 Working Early and O�en
A previous study by Edwards et al. [8] found that students who
began submi�ing their work earlier also tended to score be�er
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Figure 2: Distribution of Early/O�en scores—themean num-
ber of days before the deadline when editing occurred.

on the project, with no signi�cant di�erence in the time spent on
the project. �is is consistent with research on procrastination
that indicates procrastination can lower scores. However, with
DevEventTracker data, we have the ability to examine all program-
ming activity, back to the initial creation of the student’s project.
In previous work [15], we de�ned the Early/O�en Index as a way of
using this data to capture the intuitive notion of procrastination. If
E is the set of all edits events, then the Early/O�en Index is de�ned
as:

earlyO�en(E) =
∑
e ∈E size(e) ∗ daysToDeadline(e)∑

e ∈E size(e)
�is de�nition amounts to the mean edit time, across all individual
character-level changes in the project, with time measured relative
to the assignment deadline—the average time at which a given
character was edited. Since this measure is a time-based average,
we present it as a (real) number of days, representing the mean
number of days before the deadline across all character-level edits.

For this measure, we chose the mean because it is a common
measure of central tendency, and it can be more sensitive to po-
tential skew in the data. In this case, because skew can play an
important role, where procrastination leads to larger edits late in
the development period, the mean may provide greater discrim-
ination. Students who work early and o�en will receive higher
scores for this metric (representing more days in advance of the
deadline) than students who tend to do more work close to the
project deadline. Figure 2 shows the distribution of early-o�en
scores across the data set.

While [15] de�ne only the mean, following this strategy, we also
can calculate an edit median in a similar way. Because skewness is
an important consideration in the distribution of times for student
development actions, we also considered using Pearson’s second
coe�cient of skewness to characterize lopsided spread. Pearson’s

> 95% <= 95%

0
5

1
0

1
5

2
0

Project Scores

E
a

rl
y
/O

ft
e

n
 I

n
d

e
x
 −

 S
o

lu
ti
o

n
 C

o
d

e

Figure 3: Comparison of solution edit times between
projects that correctly solved an assignment, and those that
did not.

coe�cient is de�ned as (mean−median) ∗3/σ , and gives a measure
of skew normalized into units based on the standard deviation, with
the sign of the measure indicating the direction of the skew. How-
ever, since this coe�cient is a linear combination of the mean and
median, it does not add explanatory power to any linear regression
models. Instead, we opt to use both mean and median together,
which captures this same notion of skewness.

Further, while both means and medians can be calculated across
all edits, we also can calculate these measures separately for edits
to so�ware tests and for edits to the solution code. �ese measures
help give an idea of when code is typically wri�en for a project.
Nevertheless, they are highly correlated, with R = 0.87 between the
solution edit time mean and median, R = 0.91 between the solution
edit time mean and the test edit time mean, and R = 0.84 between
the test edit time mean and median. Still, we investigated all four
for completeness.

To test for relationships with the outcome variables, we used
a mixed model ANCOVA. Means and medians for both solution
editing and so�ware test editing were used as continuous indepen-
dent variables, and were all simultaneously treated as covariates
with the dependent variable of interest. Students served as sub-
jects, and assignments were treated as repeated measures (with
unequal variances) on the same subject, to perform within-subjects
comparisons in the ANCOVA.

With respect to project correctness, we used the percentage of
instructor-wri�en so�ware tests that the student’s �nal solution
could pass as the dependent variable in the ANCOVA. We found
that solution mean edit times were signi�cantly related to project
correctness (F = 16.2, p < 0.0001). In other words, students who
worked on their solution earlier were more likely to produce more
correct programs. �is is consistent with the earlier result from
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Figure 4: Comparison of solution edit times between
projects that were on time versus late.

[8], but now using actual development log data instead of just
submi�ed work. Figure 3 illustrates this relationship by showing
the distribution of solution mean edit times for projects with greater
than 95% correctness scores versus those with lower scores. Note
that when both the solution edit mean and median times were
considered, the median was not signi�cant (F = 0.73, p = 0.39). �e
same ANCOVA indicated that the test edit median time was also
signi�cantly related to project correctness (F = 10.0, p = 0.0018;
the mean was not signi�cant, F = 0.06, p = 0.80). �ese di�erences
were present, even when controlling for student variability using
a within-subjects test, indicating that these di�erences were not
simply due to individual student traits.

With respect to �nish times, we used the number of hours before
the deadline when the student’s �nal work was submi�ed as the
dependent variable in the ANCOVA. We found that both solution
mean edit times (F = 55.9, p < 0.0001) and solution median edit times
(F = 28.7, p < 0.0001) were signi�cantly related to �nish time, with
earlier early/o�en scores corresponding to earlier �nish times. �is
is as one would expect, since working earlier does allow a greater
opportunity to �nish earlier. �is is also similar to the results in
[8], where earlier submission times were associated with earlier
completion times. Figure 4 illustrates this relationship by showing
the distribution of solution mean edit times for projects that were
completed on time versus late.

Finally, with respect to total time spent working, we used the
number of hours spent as the dependent variable in the ANCOVA.
We found that only the test edit time median (F = 10.8, p = 0.001)
was signi�cantly related to total time spent, with earlier edit times
associated with slightly longer total time spent. It is notable that
the median (not mean) was signi�cant in this case, since the me-
dian is less sensitive to skewing when there are outliers very early
in the development process but more editing occurs in a smaller

time frame closer to the deadline. �e median edit time marks the
point at which half of the edit activity has already been completed,
regardless of its distribution over time. One might interpret this to
mean that students who do a signi�cant portion of the work earlier
have more opportunities to invest time on the project later. Or,
instead, it may be that students who start very early have to spend
more time �guring out details that are only clari�ed in the assign-
ment speci�cation for everyone else at a later date. By performing
a similar repeated measures ANCOVA to examine the relationship
between time spent and program correctness, we �nd no evidence
of a signi�cant relationship (F = 1.9, p = 0.17).

In summary, projects with high early/o�en scores (more speci�-
cally, solution edit mean times) tended to be more correct and to
be �nished earlier. While earlier median edit times for so�ware
tests were associated with students who spent more time on their
projects, this was not directly associated with higher scores. Our
calculation of time spent on a project is more accurate than the
previous study. Instead of using �rst and last submission times as
proxies for beginning and completing a project, DevEventTracker
allows us to get the actual time spent developing the project, by
giving us work session information directly from students’ local
Eclipse environments.

4.2 Test Writing
Incremental test writing—that is, writing so�ware tests to check
your own work as you go—is another development practice we
wished to examine. One aspect of test writing has already been
discussed in Section 4.1: the test edit time mean (and median). �ose
measures capture part of what it means to “test early”, but do not
directly capture how close in time the writing of code and tests
happen.

It is also worth noting here the relationship with test-driven
development (TDD). In current practice, most developers interpret
TDD to require writing the so�ware tests for a feature �rst, before
writing the corresponding piece of the solution. Here we are using
a less stringent notion for incremental testing: whether you write
the test or the solution �rst is less important than whether you
do them together, in small chunks. In other words, we are more
interested in indicating when students practice a “code a li�le, test
a li�le” style of programming, regardless of whether they strictly
write tests before writing solution code.

To capture this notion, the Incremental Test Writing measure is
de�ned [15] as the di�erence between the mean time of solution
edits and the mean time of test edits. A small number indicates that
the central tendency for test editing somewhat closely follows the
central tendency for solution editing, while a much larger value
indicates that test editing on average occurs closer to the end of
development—that is, noticeably a�er the bulk of the solution code
was wri�en. While this metric is calculated as a combination of
early/o�en indices for test code and solution code, it is important to
note that it has nothing to with procrastination. It is only concerned
with assessing how regularly the student writes tests during the
project life cycle, regardless of when in the life cycle this occurs. If
SE ⊂ E is the set of all solution edits and TE ⊂ E is the set of all
test edits, then Incremental Test Writing can be calculated as:

incTestWriting(E) = earlyO�en(SE) − earlyO�en(TE)
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Figure 5: Distribution of Incremental Test Writing scores—
the number of days that test writing occurs a�er solution
writing, on average.

Figure 5 shows the distribution of Incremental Test Writing scores
across all projects.

As with the early/o�en means and medians, for incremental test
writing we used the same mixed model ANCOVA with assignments
as repeated measures over students as subjects. With the incremen-
tal test writing metric as a continuous independent variable, we
found no evidence for a relationship with project correctness (F =
2.54, p = 0.11), �nish time (F = 0.17, p = 0.68), or time spent (F = 0.29,
p = 0.59). From the data, it appears that the median time of test
edits is more important than that test edits be “close” to solution
edits, since test edit median time is signi�cantly associated with
project correctness.

At the same time, the DevEventTracker data can be used to
provide visual analysis of a student’s programming process. Help-
ing students to visualize their own programming process and to
compare that against their peers might encourage them to intro-
spectively consider where improvements could be made. �is could
provide useful feedback during project life cycles. Figures 6, 7 and 8
show “skyline plots” of the programming process for projects with
varying levels of incremental test writing and procrastination. �e
plots depict step-functions for the amount of test code and solution
code wri�en over time. �e width of each step is the length of the
work session, and the height (from the x-axis) is the amount of code
wri�en in each work session. Each work session is separated by at
least 3 hours of inactivity 1. �erefore, work sessions that look as
though they lasted multiple days (particularly in Figures 6 and 7),
appear because the student se�led down to work on the project
multiple times, without stopping for a period of at least 3 hours.

1�is is less granular than the threshold of 1 hour used to calculate time spent on
projects, which results in more clu�ered visualizations that are harder to understand.

Figure 6: An example of a project with unsatisfactory test
writing—notice the spike in the amount of test code written
as the due date approaches. �is project was in the 45th per-
centile for Incremental Test Writing, and in the 49th per-
centile for the Early/O�en Index.

Figure 7: An example of a project with an intermediate met-
ric score for test writing, with room for improvement. No-
tice the irregular bursts of test code writing, and that work
started a�er the �rst Milestone was due. �is project was in
the 64th percentile for Incremental Test Writing, and in the
69th percentile for the Early/O�en Index.

�e dashed vertical lines represent project milestone due dates
(M1, M2, and M3). �ese milestones are intermediate due dates,
with minor grade penalties a�ached if a given milestone’s require-
ments are not met by the due date. Typically, milestones are de�ned
in terms of some number of reference tests passed, and percentage
of solution code lines covered by student unit tests. Dashed vertical
lines are also shown for (E), the “early bonus deadline” (students
who make their �nal submission by this deadline are given a bonus
in their total project score), and the actual project deadline (F).

4.3 Program and Test Launches
Another key notion of working incrementally is self-checking one’s
work periodically, as each small chunk nears completion. �is might
be done by writing and running so�ware tests as one develops,
for students who practice incremental testing. Alternatively, it
might also involve interactively running a program to con�rm its
behavior manually. While proponents of TDD argue persuasively
that interactive execution is not as e�ective for checking behaviors,
in designing our incremental development metrics we chose to
include both possibilities.



Figure 8: An example of a project with model scores under
the test writing metric—notice how the test code and solu-
tion code follow similar patterns over time. �is project was
in 90+ percentile for both Incremental Test Writing and the
Early/O�en Index.

�e DevEventTracker plugin tracks both interactive program
launches and so�ware test executions, and also records the pass/fail
outcomes of so�ware tests, providing all of this information in the
logged data for analysis. �e metrics originally presented in [15]
included two aimed at capturing the amount of code students typ-
ically write before either launching the program interactively or
running so�ware tests on it.

�e incrementalChecking metric [15] considers the time be-
tween an individual character-level edit action and the next sub-
sequent program launch or test execution. It is the mean of these
times over all edits, representing the average amount of time that
passes between a code edit and the next program launch or test
execution. Using the same ANCOVA analysis procedure, we found
no evidence for a signi�cant relationship between this measure and
project correctness, time of completion, or time spent.

�e incrementalTestChecking metric [15] is almost identical,
except that it only considers so�ware test executions and does
not count any interactive program launches. While we advocate
so�ware testing in CS3 (and also in CS1 and CS2), experience sug-
gests that at least some students do not follow it, and in proposing
measures we wanted to account for students who self-checked
their work without using so�ware tests. However, it turned out
that the event data showed students used so�ware test executions
much more commonly than interactive program launches. Test
launches were signi�cantly more frequent than normal program
launches (t = 13.977,p¡0.0001, test = 229.23, normal = 55.66). 83%
of projects had more test launches than solution launches, and
test launches made up approximately 80% of all launches across
projects.

Nevertheless, when examining the relationships between the
incrementalTestChecking and the identi�ed outcome variables, we
found no evidence for a signi�cant relationship with project cor-
rectness, time of completion, or time spent. We explored alternative
measures, including mean and median times for both interactive
program launches and so�ware test executions relative to the due
date, and also found no signi�cant relationships.

5 DISCUSSION
�antifying the programming process in terms of incremental
development and procrastination is a non-trivial task, primarily
because of the lack of ground truth against which to judge any
metrics. However, our suite of metrics have provided some encour-
aging qualitative as well as quantitative results. However, based
on this study, we can formulate answers to the research questions
posed in Section 1.

(1) Which metrics are signi�cantly related to project success, in
terms of producing a solution that behaves correctly?

In this study, we measured project success using the percent-
age of instructor-wri�en reference tests passed by a student’s �nal
submission for an assignment. We found a statistically signi�cant
relationship between project correctness and the mean edit times
for solution edits, and also the median edit times for test edits. �ese
metrics provide a quanti�ed representation of procrastination, and
these �ndings are in keeping with well-known e�ects of procras-
tination while working toward project completion [19]. However,
we did not �nd signi�cant relationships with the incremental test
writing metric, or with either incremental checking metric based
on when students launched their programs (or tests).

(2) Which metrics are signi�cantly related to �nishing solutions
on time?

In this study, we measured �nish times using the time of sub-
mission by a student of their �nal work on an assignment. Both
solution mean and median edit times were signi�cantly related to
�nish times. Again, these results are consistent with the known
e�ects of procrastination. Be�er performance on the Early/O�en
Index is related with a higher likelihood of completing a project on
time, regardless of the amount of time spent on a project. �ese
�ndings align with a separate study that measured procrastination
and its impact on project performance, using a di�erent data source,
suggesting that the Early/O�en Index is an accurate measure of
procrastination [8]. At the same time, we did not �nd signi�cant re-
lationships with the incremental test writing metric, or with either
incremental checking metric.

(3) Which metrics are signi�cantly related to how much time is
spent working?

Although there was no evidence for a relationship between time
spent and project correctness, we did �nd a signi�cant relationship
between the median time for test edits and total time spent. �is
result was not observed in prior work, although it is based on more
accurate, �ner-grained data collected over the whole development
cycle, rather than only timestamps of submission a�empts made
by students as they near completion of their work. It is plausible
that this e�ect may be related to the larger span of opportunities
available over the longer period of time between project initiation
and the deadline for students who start earlier, although more work
would be needed to con�rm this. Yet, since there is no evidence for
a relation between time spent and project correctness, this extra
time does not appear to translate directly into a grade advantage.
Instead, it may simply mean more time to work at a slower pace
under less stressful conditions, and more time for re�ection while
working.



6 APPLICABILITY
In this section we discuss methods by which our metrics could be
used to support class interventions. To support possible interven-
tions it is necessary to develop a predictive model based on these
metrics. While complete predictive model development is outside
the scope of this paper, we did explore predicting program cor-
rectness prediction in particular. Because both solution edit mean
times and test edit median times were signi�cant, we constructed a
response surface model using these two as continuous independent
variables, with project correctness score as the continous dependent
variable to be predicted. �is model was statistically signi�cantly
related to correctness scores, and we used its prediction equation
as the input to generate a partition model used to classify program
solutions as either “solved” (in the group scoring greater than 95%
correctness) or not. �is predictive model was 69% accurate at clas-
sifying the students in our sample (where SE represents all solution
edits and TE represents all test edits):

(0.733 + 0.022 ∗ earlyO�en(SE) − 0.007 ∗medianTime(TE)) > 0.83

While this is by no means a validated prediction model, it sug-
gests that such models can achieve some degree of accuracy. Fur-
ther, if project size can be estimated, medians (or approximations of
means) can also be estimated. Since successful (solved) project so-
lutions have mean edit times more than a week ahead of deadlines,
it should be possible to predict performance with some degree of
accuracy with some degree of lead time before the deadline. De-
veloping and validating an appropriate model is important future
work, although this paper lays the necessary groundwork by identi-
fying the measures most appropriate for use in such a model. �ere
are also many potential interventions that could be driven by such
a predictive model.

Adaptive emails: Previous work [16] has discussed the e�ects
of interventions with adaptive feedback on students’ procrastina-
tion behaviors and project performance. Students were sent emails
with feedback generated from data about their last submi�ed work,
and the e�ects were positive when compared to a control group.
Our suite of metrics could be applied in a similar fashion. �e
feedback generated from data made available by DevEventTracker
could be far more speci�c than that reported in [16].

A learning dashboard: Visualizations such as those seen in
Figures 6, 7, and 8 could be part of a web-based learning dashboard.
Graphs showing the progression of solution code and test code over
time could be automatically generated for each student, providing
visual feedback of their programming process.

A leaderboard: �e information described above could also be
presented in a way that relates the individual’s performance to
the rest of the class. Making students aware of their standing in
the class could provide more incentive for self-improvement than
simply informing them of their own programming practices.

Project grade: A portion of the project grade is already allo-
cated based on things other than correctness, such as the percentage
of code covered by students’ own tests, and the quality of the com-
ments and program style. A natural step is to allocate a portion
of the project grade based on an assessment of incremental devel-
opment and time management practices. However, this opens up
some possibilities for gaming the system to arti�cially raise the

metrics, so work would need to be done to make the metrics robust
to these activities.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we built on previous work [15] that enabled us to
collect �ne-grained programming process data from students’ local
Eclipse environments. In order to accurately assess abstract con-
cepts like incremental development and procrastination, we devel-
oped a set of four metrics that we believe cover di�erent dimensions
of both concepts. We built on previous qualitative evaluations by
conducting a quantitative analysis to investigate the relationships
our metrics have with three identi�ed outcome variables, and we
used these results to make a case for the accuracy and correctness
of our calculations.

We found a number of signi�cant relationships between our met-
rics and project correctness, time of completion, and total time spent
working on the project. Although we hoped to characterize the
e�ects of incremental development actions, it appears that the most
signi�cant e�ects come from e�ective time management practices—
that is, working on a project early and o�en, as characterized by
mean and median edit times for solution code and for test code,
and thus avoiding the pitfalls of procrastination. Unfortunately,
other metrics regarding incremental test writing, or incremental
self-checking of work using interactive program launches or execu-
tion of so�ware tests were not signi�cant. �ose implications are
discussed in Section 5. �ese relationships are not novel ones un-
covered by our metrics. Rather, we take advantage of their intuitive
and well-known nature to provide legitimacy to our metrics. �e
key issue is that these metrics provide an opportunity for mean-
ingful feedback to students, either in an on-going basis during a
project’s development cycle, or as assessment feedback.

�is research is a work in progress, and naturally there is room
for improvement and future work. �e most important next step
is to develop and validate a predictive model that can be used for
applying interventions. �is can be followed by evaluation of the
e�ectiveness of interventions, which can be measured in terms of
the metrics found to be signi�cant in this paper.

In addition, the DevEventTracker data is rich enough that this
work barely touches the surface. It o�ers the possibility to examine
the e�ects of debugger use, on its own or in relation to testing activ-
ities; examine issues regarding test quality, and what role it plays in
self-checking or incremental development; examine predicting time
to completion, to keep students informed of when they are likely
to �nish or whether they are likely to be late, with as much ad-
vance notice as possible; and perform deeper examinations of code
changes captured in the git snapshots that track the event stream
collected by DevEventTracker. All these and more are enabled by
this style of data collection, which helps to open new avenues of
data-driven research about student programming activities.
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