DevEventTracker: Tracking Development Events to Assess
Incremental Development and Procrastination

Ayaan M. Kazerouni, Stephen H. Edwards, T. Simin Hall, and Clifford A. Shaffer

Dept. of Computer Science, Virginia Tech, Blacksburg, VA 24061
ayaan|s.edwards|simin.hall|shaffer@vt.edu

ABSTRACT

Good project management practices are hard to teach, and
hard for novices to learn. Procrastination and bad project
management practice occur frequently, and may interfere
with successfully completing major programming projects
in mid-level programming courses. Students often see these
as abstract concepts that do not need to be actively applied
in practice. Changing student behavior requires changing
how this material is taught, and more importantly, changing
how learning and practice are assessed. To provide proper
assessment, we need to collect detailed data about how each
student conducts their project development as they work on
solutions. We present DevEventTracker, a system that con-
tinuously collects data from the Eclipse IDE as students pro-
gram, giving us in-depth insight into students’ programming
habits. We report on data collected using DevEventTracker
over the course of four programming projects involving 370
students in five sections of a Data Structures and Algorithms
course over two semesters. These data support a new mea-
sure for how well students apply "incremental development”
practices. We present a detailed description of the system,
our methodology, and an initial evaluation of our ability to
accurately assess incremental development on the part of
the students. The goal is to help students improve their
programming habits, with an emphasis on incremental de-
velopment and time management.

CCS Concepts

eSocial and professional topics — Computer science ed-
ucation; eSoftware and its engineering — Software cre-
ation and management;

Keywords

Incremental development; procrastination; interactive devel-
opment environment; educational data mining; project man-
agement practice

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

ITiCSE 17, July 03 - 05, 2017, Bologna, Italy

(© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4704-4/17/07. .. $15.00

DOL: http://dx.doi.org/10.1145/3059009.3059050

1. INTRODUCTION

Tools for automatic assessment of programming assign-
ments enable students to gain more programming practice
with less active grading effort for instructors [11]. These
tools are able to automatically grade on metrics like code
style and thoroughness of testing in addition to correct-
ness [3, 9]. Many such systems are designed to support
small-scale programming exercises. At that scale, there is
little concern for the development process, and procrastina-
tion generally relates only to getting started with the as-
signment. Mid-level computer science courses often involve
major programming projects, in which students are writing
many hundreds or even thousands of lines of code, with life
cycles measured in weeks. In this situation, support systems
such as Web-CAT [3] can help with managing project sub-
missions, evaluating code style, automated grading through
unit testing, and assessment of artifacts such as student tests
in terms of code coverage.

None of these aspects directly address a major concern
that too many students are unable to complete programming
projects at this scale. This often is a result of inadequate
skill by the student in good project management techniques,
including time management and fundamental development
processes such as incremental development. Procrastination
has proven to be a pervasive problem among students work-
ing toward project completion. Previous work has shown
that students who start their projects early and practice
good time management receive better grades than students
who start late [4].

Unfortunately, to date there have not been tools to help
instructors assess and evaluate student adherence to good
development practice. This is in large part because the nec-
essary data about the details of the student’s development
process have not been available. For example, incremental
development with regular testing is a known best practice of
software development [2]. Existing tools are generally unable
to assess incremental development and time management as
students work on their solutions. In this paper we present
DevEventTracker, a system designed to collect fine-grained
data about the student development process. With these
data in hand, the next step is to analyze the data to detect
procrastination and whether students employ good develop-
ment practices like incremental development and effective
testing procedures. If that could be done, then suitable in-
terventions to encourage good practices could be devised.

Section 2 presents related work in data tracking and pro-
crastination assessment systems and strategies. A detailed
description of DevEventTracker’s functionality is given in

Section 3. Sections 4, 5, and 6 present preliminary find-
ings obtained from using the system over the course of two
semesters, and the results of a series of student interviews.

2. RELATED WORK

Web-based Center for Automated Testing (Web-CAT) [3]
is a web-based automated grading system that allows stu-
dents to make multiple submissions to an assignment and
receive immediate feedback. This feedback can be about
correctness, code style, or code coverage by student-written
tests. Web-CAT interacts with a custom Eclipse plugin that
allows students to make submissions and download starter
projects directly from within the IDE.

This model of multiple submissions affords us the abil-
ity to gather information about the student’s development
process, such as when a student started submitting it to
get feedback and when they finished. It also provides an
opportunity for analysis of the differences between submis-
sions, giving a rough idea of a project’s development trajec-
tory. What it does not do is give us enough insight to assess
whether or not students are practicing incremental develop-
ment. To accurately assess this, we would need more gran-
ular data collected during development, rather than after
submissions; in the latter state, we would invariably receive
data about projects already in varied degrees of completion.

To this end, an addition was made to Web-CAT’s Eclipse
plugin, called the DevEventTracker Addition. The plugin
continuously collects development event data as students
program, giving us unique insight into the development pro-
cess of the typical student. Benefits are twofold: 1) Our data
are no longer limited by when a student decides to make a
submission. 2) Since we are collecting data directly from
the IDE, we have access to events that were not available
through Web-CAT alone.

The Test My Code (TMC) plugin [10] for NetBeans be-
haves in a similar fashion to our Eclipse plugin. It records
events whenever the student saves, runs, or tests code us-
ing instructor-provided tests. Hosseini, et al [5] make use of
this plugin in an attempt to achieve goals similar to ours,
but with some differences in the type of data collected. For
example, in terms of detecting student testing, the TMC
plugin collects data on runs of pre-written tests provided by
the instructor, while DevEventTracker collects data about
students writing and running their own tests. This provides
information about the student’s autonomous software devel-
opment habits, which is ultimately what we wish to assess.

Hackystat [6] is an open-source project from the Univer-
sity of Hawaii that provides product and process measure-
ments in software engineering situations in education and
industry. DevEventTracker builds upon Hackystat, using
Hackystat’s client-side protocols and preexisting sensors in
conjunction with our own extensions to send data to the
server. Unlike Hackystat, DevEventTracker also collects
event data for program and test launches from within the
IDE. These additional events provide valuable information
for assessing development patterns.

Marmoset [9] is an automated grading system developed
at the University of Maryland. It uses an Eclipse plugin to
collect student code and store it in a Concurrent Versioning
System (CVS) repository each time a file is saved. Marmoset
inspired us to capture repositories of student code, since
event data alone might not capture enough of a student’s
work-flow to properly assess incremental development.

Researchers at the University of West Georgia [1] mined
student revision histories from the Mercurial version con-
trol system to assess the state of incremental development
in a CS2 course. Incremental development was defined in
terms of the size and scope of commits, including checking
for commits related to integrated test-writing. In answer to
the question Are students properly incorporating testing as
part of their iterative development?, the researchers found
that there was room for improvement.

A previous study [4] collected five years of data from
the first three programming courses at Virginia Tech. As-
signment results were partitioned into two groups: scores
above 80% (A/B), and scores below 80% (C/D/F). Analy-
sis yielded important results. When students received A/B
scores, they started earlier and finished earlier than when
the same students received C/D/F scores. After normaliz-
ing for program length, there was no significant difference in
the amount of time spent on each project stemming from
starting earlier vs. later. This study provided convinc-
ing evidence that procrastination was correlated with lower
project scores.

These findings led to another study [8] that administered
three different types of interventions to prevent procrasti-
nation. That study found that of the three interventions
(short reflection essays after each project, a requirement to
set and track scheduling information and progress through-
out the assignment, and e-mail alerts regarding progress to-
ward completion), only e-mail alerts were associated with
significantly reduced rates of late program submissions and
significantly increased rates of early program submissions.
The promise shown by this method was credited to the
fact that the emails were relevant to individual students,
generated using data from that student’s latest submission
to Web-CAT. However, we note that the emails were quite
non-specific as to how much progress the student had actu-
ally made. More detailed feedback about progress and class
standing could potentially have a greater impact.

We believe that interventions that provide students with
feedback about their own programming practices should en-
courage the practice of incremental development and self-
checking behavior. When a student makes a submission to
Web-CAT, Web-CAT is able to give the student a percent-
age of code covered by their test cases, but is unable to tell
with accuracy when the testing takes place: students could
be practicing regular testing and development like they are
supposed to, or they could be churning out tests right be-
fore the deadline. The reality is probably somewhere in the
middle, and a rough idea can be gleaned from looking at
the differences between submissions. Unfortunately, the in-
formation is not granular enough to accurately assess incre-
mental development, especially since some students submit
frequently to Web-CAT, while others prefer to do a lot of
work between submissions. Some students make their first
Web-CAT submission early in the development cycle with
the goal of initially passing only a few tests, while others
wait until much later in the development cycle to make their
first submission. While early submission might seem to be
more indicative of incremental development, we can’t know
that those whose initial submissions are made relatively late
are not doing a lot of incremental development and testing
without feedback from Web-CAT. We should ideally gener-
ate feedback from data that is generated directly from the
student’s edit-and-run process within their IDE.

3. THE DEV EVENT TRACKER

In this section we present a detailed description of the De-
vEventTracker subsystem. We use a custom Eclipse plugin
to allow students to make submissions to Web-CAT and to
download starter projects provided by the instructor. An
addition was made to the plugin that allows the continuous
collection of data from the IDE, not limited by when a stu-
dent decides to make a submission. This continuous stream
of data will provide instructors and researchers with a real-
time understanding of a typical student’s programming pro-
cess. We collect timestamped development events as well
as Git snapshots of the project as the student develops it.
The development events capture a number of activities from
within the student’s IDE, and are used in the development
of automatic assessment. The Git snapshots are used pri-
marily for verification and evaluation of these assessments.

Edit Events: DevEventTracker collects Edit events in
real time as a student programs. An Edit event is recorded
each time a student saves their work. For each event, some
meta-data is included. We know the size of the edit in state-
ments or methods added or removed, and we know if the
edit was within solution code or test code. Analysis of an
ordered sequence of edits containing this information yields
an understanding of how and when a student approaches
writing tests for their program. These time-stamped events
also provide insight into a student’s procrastination habits,
using a method described in Section 5.

Launch Events: Often, especially in the early stages
of a project and for small changes, testing mainly consists
of launching a program and examining its behavior. De-
vEventTracker monitors launches within Eclipse, collecting
and recording meta-data about each launch. It records the
type of the launch (execution of test cases vs. a regular
interactive execution of the program); whether the launch
terminated normally or with an error code; and for unit test
runs, how many test case successes, failures, and errors re-
sulted. This functionality does not limit our knowledge of a
student’s testing behavior to when they create new tests; it
also records when they are running ezisting tests.

The sequence of tests passing or failing over the course of
development provides a representation for how testing aides
the successful implementation of a project. This information
can be provided to students, who will benefit from an exter-
nal view of how regular testing would help them successfully
complete projects.

Other events: When students encounter build errors, we
receive events containing the error message and information
about the Java file that caused it. Data such as this can be
used to analyze the types of problems most commonly en-
countered by students with different levels of programming
expertise.

DevEventTracker also saves data about a student’s use of
the Eclipse debugger. It records when breakpoints are added
or removed, when a debug session is started, and a student’s
actions during that session (step into, step over, etc.). The
plugin collects data about code-refactoring activities within
Eclipse. It records renaming and moving activities, with the
plugin collecting information about old and new names and
locations of units as they are refactored. Refactoring data
do not star in the initial analysis we present in this paper,
but they open up avenues for further research that depends
on this type of analysis.

Git snapshots: Every student’s project has a git repos-
itory associated with it, with the remote repository resid-
ing on the Web-CAT server. Whenever a student makes a
change and saves a file, a Git snapshot is captured and sent
to the server. This provides us with the ability to make fur-
ther fine-grained observations about the changes to a project
over time. More importantly, it allows us to evaluate the as-
sessments made using development events.

4. METHOD

DevEventTracker was used by students in five sections
of a post-CS2, junior level Data Structures and Algorithms
course over two semesters. On the first day of class, we col-
lected informed consent from the students. Students who did
not give consent (less than 4% of the total) were excluded
from data analysis. Once the number of students enrolled
had stabilized, this made for a total of 370 students, gen-
erating data each time they worked on their projects. The
course had four assigned projects, and data were collected
for each one.

The class syllabus required students to program all of their
projects in the Eclipse IDE, using the Web-CAT submission
plug-in to submit assignments and download starter code.
This setup has been the standard for many programming
courses at our university for several years. The only differ-
ence for this project is that the plugin was augmented with
data-collection functionality. The act of downloading starter
code or making a submission creates a link between Web-
CAT and a specific project in a student’s Eclipse workspace,
and this allows Web-CAT to begin receiving data for that
project. To ensure that we received data from the moment
work began on a project, we provided starter code for each
project. In other words, we did not wait until the first sub-
mission to begin receiving data. The starter files provided
for each project did not contain any stubbed out code ex-
cept amain() method (with the correct file and class names)
that printed the string ‘Hello world]” and a test method
invoking it. This is because we wanted unadulterated in-
formation about how students approach assigned projects,
from start to finish. An added benefit of this approach was
that students did not have to worry about the semantics of
structuring and naming the project so that Web-CAT would
accept it; that was already provided via the starter project.
While we attempted to minimize the impact our data collec-
tion had on the students’ programming experience, students
were aware that it was taking place, and they sometimes ex-
perienced some delays due to data transmission.

If a connection to the Web-CAT server was unavailable,
event data was logged locally until a connection became
available. This ensured that we did not miss out on event
data generated when students programmed without an in-
ternet connection, or if the Web-CAT server went down for
a period of time.

S. ASSESSMENT MODEL

Our modeling process involved taking in a large volume of
data for each student’s project and reducing it to a vector
of four metrics that we designed to cover the various dimen-
sions of incremental development.! We focused on having
each metric represent an item that—when presented to the

!See https://github.com/ayaankazerouni/sensordata

student—provides a concrete course of action aimed at im-
proving their programming practice.

At this stage of our project, each metric is intentionally
kept separate from the project grade. Students were not in-
formed about any of these results (except for the students
interviewed as described in Section 6.1), since at this stage
we were only trying to judge our ability to recognize the
level of incremental development. Note that the metrics as
described below are raw indices, meaning that lower num-
bers might be better for some of them.

Early/Often Index: A measure of how early and how
often a student works on a project, defined in relation to
the due date for the project. We add up each edit’s size in
statements, with each size being weighted by the number of
days until the project deadline. Then we divide this total
by the total edit size. If E is the set of all edits, then the
early /often index is defined as:

> ccr size(e) - daysToDeadline(e)
ZEGE Size(e)

This produces an average that is weighted by how many
days from the deadline—and how often—a student tends
to work on their project. Therefore, if a student tends to
work several weeks or days before the deadline, this metric
will have a larger value; and if a student tends to procrasti-
nate until the project deadline is close, this metric will have
a smaller value (or possibly negative, depending on course
policies). This metric is used as a quantitative assessment
of procrastination, and a larger value is better.

Incremental Checking: A measure of how well a stu-
dent self-checks their code by launching it. Here, ‘launches’
are defined as either regular program executions or test ex-
ecutions. For many students, simple launching with diag-
nostic print statements is a valuable method of testing and
debugging. To focus on unit test launches only would be to
ignore a common testing strategy for many. We add up each
edit’s size, with each size being weighted by the number of
hours until the next project launch. Then we divide this
total by the total number of edits:

earlyOften =

> ecr Size(e) - hoursToNextLaunch(e)

incrementalChecking = S size(0)
This gives a value governed by the amount of the code a
student writes and the time that passes before they next
launch their code. For this metric, smaller values are
better.

Incremental Test Checking: A measure of how well a
student self-checks their code using automated tests. Unlike
the previous metric, here we focus only on test executions.
The metric is calculated in a similar way: we add up each
edit’s size, with each size being weighted by the number of
hours until the next test launch. Then we divide this total
by the number of edits:

> ecr Size(e) - hoursToNextTestLaunch(e)

incTestChecking S sizele)
The main benefit from this metric over the previous one is
that it gives us an indication of whether the student is prac-
ticing progressive regression testing [7] or not. It also gives
an indication of the role that formalized testing plays in the
student’s development process. For these first two metrics,
if a student tends to write a lot of code before checking that

it works, they would have larger values, and vice-versa, so
smaller values are better.

Incremental Test Writing: A measure of how regularly
a student writes tests. To successfully practice incremental
development, students should regularly write unit tests to
verify the correctness of the functionality they have recently
implemented. We calculate Early/Often indices separately
for solution code and test code. Then we find the difference
between these two metrics. The result is a metric whose
value is governed by the average amount of time that passes
between the writing of solution code and test code, and by
the amount of code written for each. Let SE be the set of all
solution edits, and let T'E be the set of all test edits. Then
we calculate this as:

incTestWriting = earlyOften(SE) — earlyOften(T E)

Therefore, if a student writes a lot of code before writing
tests for it, this metric would have a larger value. Similarly,
if a student writes test code a long time after writing solu-
tion code, a larger value would be produced; for example,
students who do their testing at the end of the project life
cycle will receive a higher value for this metric. Therefore,
smaller values are better.

It is important to note that this score is not related to
procrastination. A student can do the entire the project on
the last day and still receive a good score for this metric; it
depends on when solution code and test code were written in
relation to each other, rather than in relation to the deadline.

6. EVALUATION

With the data collection process in hand, our main con-
cern now is whether we can accurately determine if the stu-
dent is using good time management practice, and if the
student is using incremental development practice. Assess-
ing these are difficult. The four measures proposed in the
previous section are models, and they might or might not,
singly or in combination, provide reliable results. A pri-
mary concern is that there is no readily available ‘ground
truth’ against which we can test our metrics. Validating our
models against grades could potentially lead to inaccuracies.
It is possible for students with good grades to follow poor
incremental development, and vice-versa.

6.1 Interviews

In order to evaluate the validity of our models, we de-
cided to use individual interviews to gather student opin-
ions. As we neared the end of the semester, we generated
incremental development scores for students on the projects
they had worked on until that point. Scores were generated
by running the raw event data through in-house Python pro-
cessing scripts written to calculate the metrics described in
Section 5. Ten students representing a range of scores on the
different metrics were selected and invited to participate in
interview sessions. Of those ten, seven agreed to participate.

The students were interviewed in depth about their pro-
gramming practices. Specifically, we asked about their test-
ing habits: How often did they write/run tests on the spec-
ified projects? What is their preferred method of testing?
What do they think of Web-CAT’s testing requirements?
The interviewers were not involved in grading students in
any way, to avoid the possibility of students thinking that
their answers would somehow affect their grade. The stu-
dents were shown our model’s assessment of their program-

ming practice, and were asked what they thought about its
accuracy, usefulness, and potential efficacy in helping them
change their programming habits in the future.

Accuracy: Six of the seven students found our assess-
ment accurate. The descriptions that follow use feminine
pronouns, regardless of the gender of the participant.

e Interviewee 1 stated that she found the model’s as-
sessment to be accurate.

e Interviewee 2 mentioned that she had been ill and
started Project 1 late and worked past the deadline.
When the assessment was revealed, we saw that our
model had been able to detect this and had given her
a low Early/Often score. When the interviewee saw
the scores, she agreed with the overall assessment.

e Interviewee 3 acknowledged that she and her part-

ner had gotten a late start on Project 1, but that she
had worked alone on Project 2 and started relatively
earlier. Our model was able to detect this—the in-
terviewee was given a low Early/Often score for one
project, and a higher score for the next.
The student also mentioned that she “didn’t write the
best tests during the beginning of [Project 1]”; she re-
lied mostly on simple diagnostic print statements for
testing and “wrote tests at the end”. This is in con-
trast to Project 2, where she “[brought] in formal test-
ing”, since she now had some experience with it. The
model’s assessment recognized this difference—the stu-
dent received a poor score for Incremental Test Writ-
ing on the first project, but a much better score for
the second project.

e Interviewee 4 received a much lower score for In-
cremental Test Writing on Project 2 than she did on
Project 1. Project 2 was almost universally cited as
the hardest project that the students worked on this
semester (at the time of the focus group, they were
starting work on Project 4). The student mentioned
that, because the project was so hard, she found herself
getting caught up in trying to implement it correctly
and ended up writing “more code before testing” than
she did on Project 1. This was reflected in our as-
sessment. Also seen was a lower score for Incremental
Test Checking, which intuitively makes sense—if she
was not writing tests until the end, she was not run-
ning them, either. An interesting thing to note here is
that, on a hard project where testing would be most
useful, the student brushed it aside in favor of going
straight ahead with the implementation.

e Interviewee 5 thought the model was mostly accu-
rate. Her answers to questions about writing tests did
not agree with her failing score for Incremental Test
Writing on Project 2. After initially expressing sur-
prise, she backtracked on what she had said earlier by
saying that the project involved a lot of recursion, and
she tends to test recursive algorithms using iterative
print statements rather than formalized testing strate-
gies. This was the only occurrence of a student vol-
unteering new information to explain a score provided
by our metric.

e Interviewee 6 was the only student who did not find
the metrics accurate. The interview revealed discon-
nects between our assessment and the student’s de-
scription of her programming practice. However, fur-
ther investigation revealed transient issues with this

student’s data reaching the server, which would lead
to inaccuracies during metric calculation.

e Interviewee 7 received high scores on all metrics, ex-
cept Incremental Test Writing for Project 2. She ex-
pressed surprise at her low score for this. The remain-
ing scores were in keeping with her description of her
programming practices.

Usefulness and future efficacy: Only one of the seven
students did not see value in the model. This was the stu-
dent who had received an inaccurate assessment due to data
transmission errors. Of the remaining six students, five
found the model to be useful and stated unconditionally that
they would try to change their programming practice if they
were given this feedback between projects. The final student
said that while the model could be useful to “somebody com-
ing into their best practices”, it was not particularly useful
to her since she already knows about and follows incremen-
tal development. This student received high scores on nearly
all metrics.

Overall, the model was mostly accurate with students gen-
erally finding the information interesting and useful. The in-
terviews confirmed the model’s ability to detect differences
in programming practices between students as well as within
students and between projects. The model also has bene-
fits in that it is clear what kinds of actions students should
pursue to increase their scores on any of the metrics.

6.2 Git Snapshots

While our focus group provided student validation of the
measures, we also wanted to directly investigate the edits
students were performing in their projects. A second type
of evaluation was carried out by manually inspecting the
Git repositories maintained by DevEventTracker. Twelve
projects were randomly sampled from the pool of submis-
sions. The inspection focused on checking whether our as-
sessment, of incremental development matched the “actual
programming process” of the student (as seen in the Git re-
vision histories). Eight of the twelve projects had low scores
(< 80 on a normalized 100-point scale) for working early
and often. Stepping through commit histories showed that
seven of these projects had multiple breaks of several days
where no work was done, leading to the project being com-
pleted within the last few days before the due date. The
remaining project with a low Early /Often score was worked
on the day before the project deadline, in a marathon ses-
sion taking up most of the day. One out of the remaining
four projects received a surprisingly high Early /Often score,
since the project was started within the last two days. How-
ever, it was worked on steadily without breaks, possibly con-
tributing to its high Early/Often score.

Incremental checking and incremental test check-
ing were evaluated using a combination of raw DevEvent
data and Git snapshots. For two consecutive ‘Launch’ events,
we stepped through revisions for commits made between
the two launches. Doing this for several random pairs of
launches gives an idea of the usual amount of work done by
that student before the program is launched. Most projects
received middling or good scores (> 80 on a normalized 100-
point scale) for these metrics, but one project received a low
score. This project was not launched for the first 10 days in
its life-cycle, and launches took place after large amounts of
code were written.

Five projects received failing scores (< 70) for incremen-
tal test writing. Inspecting the file changes over time
showed that a majority of testing was done on the last few
days of work. Three projects received middling scores (70
to 90) for this metric. Inspection of their commit histories
showed that regular testing began after a few days of regular
work on the project, but was fairly regular for the rest of the
project. The remaining four projects received high scores (>
90) for this metric. Their commit histories showed that test-
ing began on the first day of work and continued consistently
until the end of the project. Also clear was the fact that test
classes were usually created and edited within a few minutes
of their corresponding solution class.

This method of validation, carried out on a separate set of
projects by manually inspecting the code edits of students
through Git snapshots, produced a similar result as the in-
terviews: Our metrics do track the incremental development
behaviors they were designed to capture, although there is
certainly room for improvement of accuracy.

7. CONCLUSIONS AND FUTURE WORK

In this study, we analyzed data for 370 students working
on four large projects in a Data Structures and Algorithms
course over the course of two semesters. We collected de-
tailed development event data using custom event-tracking
software integrated into an Eclipse plugin. In order to accu-
rately assess abstract concepts like incremental development
and procrastination, we developed a set of four metrics we
believe cover the different dimensions of both concepts. De-
velopment of these easy-to-understand metrics allowed us to
gather feedback from students on the accuracy of our model.

Six out of seven students interviewed found the model ac-
curate and useful, stating that the feedback provided might
encourage them to change their programming behavior from
one project to the next. Further, a separate manual investi-
gation of code snapshots in student projects confirmed the
measures track intended behaviors. Together, these repre-
sent encouraging results in an effort to turn qualitative ideas
that are difficult to assess into quantitative measures that
can be systematically and repeatedly applied.

An important benefit of DevEventTracker is that it af-
fords us the ability to conduct further work toward answer-
ing questions about student programming behaviors. Such
questions include:

e How does incremental development (as measured by
our metrics) affect project grades?

e How does providing students with their incremental
development scores affect their programming practice
from one project to the next?

e Are there meaningful patterns in the ways partners
work together on projects?

e Are there meaningful patterns of behavior related to
early vs. late Web-CAT submission practices?

8. ACKNOWLEDGEMENTS

This work is supported in part by the National Science
Foundation under grant DUE-1245334. Any opinions, find-
ings, conclusions, or recommendations expressed in this ma-
terial are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

9. REFERENCES

[1] L. Baumstark, Jr. and M. Orsega. Quantifying
introductory cs students’ iterative software process by
mining version control system repositories. J. Comput.
Sci. Coll., 31(6):97-104, June 2016.

[2] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn,
W. Cunningham, M. Fowler, J. Grenning,

J. Highsmith, A. Hunt, R. Jeffries, et al. The Agile
Manifesto, 2001.

[3] S. H. Edwards and M. A. Perez-Quinones. Web-cat:
Automatically grading programming assignments. In
Proceedings of the 13th Annual Conference on
Innovation and Technology in Computer Science
Education, ITiICSE 08, pages 328-328, 2008.

[4] S. H. Edwards, J. Snyder, M. A. Pérez-Quifiones,

A. Allevato, D. Kim, and B. Tretola. Comparing
effective and ineffective behaviors of student
programmers. In Proceedings of the Fifth International
Workshop on Computing Education Research
Workshop, ICER, 09, pages 3—14, 2009.

[5] R. Hosseini, A. Vihavainen, and P. Brusilovsky.
Exploring problem solving paths in a java
programming course. In Psychology of Programming
Interest Group Conference, PPIG 2014, pages 65-76,
2014.

[6] P. M. Johnson, H. Kou, J. M. Agustin, Q. Zhang,

A. Kagawa, and T. Yamashita. Practical automated
process and product metric collection and analysis in
a classroom setting: Lessons learned from
Hackystat-UH. In Proceedings of the 200/
International Symposium on Empirical Software
Engineering, ISESE’04, pages 136—144, 2004.

[7] H. K. N. Leung and L. White. Insights into regression
testing [software testing]. In Proceedings. Conference
on Software Maintenance - 1989, pages 60—69, Oct
1989.

[8] J. Martin, S. H. Edwards, and C. A. Shaffer. The
effects of procrastination interventions on
programming project success. In Proceedings of the
Eleventh Annual International Conference on
International Computing Education Research, ICER
15, pages 3-11, 2015.

[9] J. Spacco, J. Strecker, D. Hovemeyer, and W. Pugh.
Software repository mining with Marmoset: an
automated programming project snapshot and testing
system. In ACM SIGSOFT Software Engineering
Notes, volume 30, pages 1-5, 2005.

[10] A. Vihavainen, T. Vikberg, M. Luukkainen, and
M. Pértel. Scaffolding students’ learning using test my
code. In Proceedings of the 18th ACM Conference on
Innovation and Technology in Computer Science
FEducation, ITiCSE ’13, pages 117-122, 2013.

[11] C. Wilcox. The role of automation in undergraduate
computer science education. In Proceedings of the 46th
ACM Technical Symposium on Computer Science
Education, SIGCSE ’15, pages 90-95, 2015.

