
Research Statement Ayaan M. Kazerouni

My research is at the intersection of so�ware engineering and computing education. I identify the e�ective and inef-
fective so�ware development practices of students, using quantitative and qualitative empirical so�ware engineering
methods like IDE-log analysis, so�ware repository mining, and semi-structured interviews. In education contexts,
assessment of so�ware currently tends to focus on qualities like correctness, code coverage from test suites, and
code style. Li�le a�ention or tooling has been developed to assess the so�ware development process. �e primary
vision of my research is to build so�ware evaluation techniques that focus not only on the �nal product, but also
on the process undertaken to produce it. I publish my work at principal computing education venues, including
the Technical Symposium of the Special Interest Group on Computer Science Education (SIGCSE), the International
Computing Education Research (ICER) conference, and the conference on Innovation and Technology in Computer
Science Education (ITiCSE). I have been honored with a SIGCSE Best Paper Award and 1st place in the SIGCSE
Student Research Competition.

Current and Past Work
My research is driven by the belief that a stronger pedagogical focus on the so�ware development process will bet-
ter equip CS graduates for roles in industry. Graduating CS students have faced well-documented di�culties upon
entering the workforce, with reports of a gap between what they learn and what is expected of them in industry. Per-
haps an early manifestation of this is the challenges faced by intermediate CS students while trying to complete large
and complex programming projects. For example, the Data Structures & Algorithms course at Virginia Tech requires
developing projects over a three to four week life-cycle, and it is common to see 25–30% of students drop the course.
Even among students who continue in the course, there is high variance in their success rates. E�ective feedback
about the programming process could improve students’ self-awareness about their programming habits, promoting
metacognition and self-regulation, which have been linked to numerous bene�ts such as increased productivity and
improved project outcomes [1].

�e primary focus of my research has been to model the programming process undertaken by students, with the
goal of providing them with feedback about their process during development. I use data from numerous sources
to formulate this feedback, including click-stream data and periodic code snapshots from the students’ integrated
development environment (IDE), and information about correctness and code quality from our automated assessment
tool, Web-CAT. I have also conducted numerous in-depth interviews with students to gain an understanding of the
more complex challenges they face while working toward project completion. Using these data, I have worked on
assessing students’ development in terms of time management, test writing, test quality, and other “self-checking”
behaviors like running the program locally or submi�ing to an oracle of instructor-wri�en test cases. �is research
is relevant to so�ware engineering researchers and practitioners; the student developers I study are typically only
two or three semesters removed from professionals entering the industry.

Time management on programming projects. Di�culties faced by students while working on programming
projects have been linked to poor time management practices. Using data from sources described above, I modelled
procrastination as a measure of how early and o�en students worked on programming projects [2]. I found that
when students worked earlier and more o�en, they tended to produce more correct programs, with no di�erence in
the total amount of time spent on the project [3]. �is hints at the intuitive notion that procrastination negatively
impacts the quality of work. Additionally, this measure has been validated through qualitative interviews. Students
indicated that it matched with their own perceptions of how they approached speci�c programming assignments [2].
I am currently working on methods for early identi�cation of students who are procrastinating, to facilitate just-in-
time interventions that that could nudge them into action.

Incremental so�ware testing. Numerous challenges hinder the pedagogy of so�ware testing. �ese include a lack
of focus on process, a lack of consensus in the so�ware engineering community onwhat that process should look like,
and widespread use of weak test adequacy criteria to drive assessments. We cannot give students e�ective feedback
without validated assessments of their so�ware testing process and the thoroughness of their so�ware tests. I have

1



worked to address these challenges by developing and evaluating assessments of students’ test writing practices,
and building on prior research in mutation analysis to facilitate rapid incremental feedback on the thoroughness of
their so�ware tests.

Students do not practice so�ware testing, despite the fact that it has been linked to improved project outcomes.
Many CS courses require students to submit so�ware tests along with their solutions, but data from IDE activity and
student interviews indicate that tests tend to be (grudgingly) wri�en toward the end of the project life-cycle. �ese
tests do not bene�t the students, and writing them at this late stage serves only to ful�ll what is perceived as an
arbitrary requirement. My preliminary investigations using IDE click-stream data indicated that on projects where
students wrote tests earlier in the project life-cycle, they ended up with be�er outcomes than when those same
students delayed testing until later in other projects [3]. Investigating further, I developed measures of incremental
testing practices [4]. I found that students did not write tests continuously as they worked on solutions, even though
eventual project outcomes improved with more continuous engagement with testing. �ese measures of incremental
testing are naturally amenable to intermediate feedback. �ey represent an important step toward a continuous
feedback loop that nudges students towards continuous engagement with so�ware testing.

So�ware test quality. In addition to so�ware testing process, there is a need for more e�ective methods of eval-
uating the quality of student-wri�en tests. Code coverage measures — although frequently used in education and
industry — have well-documented de�ciencies when it comes to measuring test adequacy. �ere is o�en a disconnect
between the quality of a student’s test suite (as measured by code coverage) and its “actual” quality (e.g., its defect
detection capability). �is results in feedback that is not pedagogically valuable to students. I am currently work-
ing on methods to incorporate mutation analysis, a stronger test adequacy criterion, into our automated assessment
system. Speci�cally, I am working on reducing its considerable run-time cost and evaluating its pedagogical value
to students.

Collaborations. I have worked on CodeWorkout, a system for novices to practice programming exercises, and
used it to study the impact of voluntary programming practice on exam performance [5]. I have made signi�cant
e�orts to aid in its adoption both within and outside Virginia Tech by ensuring its interoperability with the Canvas
learning management system [6], the OpenDSA e-textbook system [7], and the MasteryGrids [8] and Realizeit [9]
learning and analytics platforms. I also applied my empirical so�ware engineering experience to collaborate on a
paper investigating the generalizability of regular expressions, published at ASE 2019 [10].

Research Agenda
Short-term: Formative assessment of the programming process. Students have indicated in interviews that
they know the bene�ts of incremental development and testing, but don’t put them into practice. Perhaps as a
consequence of this, students face reduced project success in the classroom, and struggles upon entering the industry.
In the short term, I plan to address this by pursuing the following research:

Understanding why students �nd it di�cult to self-regulate their programming behaviors. What makes good pro-
gramming process di�cult to learn? Once good process is “learned”, what makes it di�cult to consistently put
into practice? I have already learned how students work toward project completion. Next, we must understand
why students exhibit the behaviors that they do. What are the social, cognitive, and situational factors that a�ect
their programming behaviors? How can we design tooling and instruction to ameliorate their negative impacts and
encourage the positive ones?

Designing programming process feedback. Assessing students’ programming process only addresses part of the prob-
lem. In order to change students’ programming behaviors, assessments must be translated into feedback. For exam-
ple, I developed measures of working early and o�en and incremental so�ware testing. How can these assessments
be used to guide students toward be�er programming practices? My lab will develop and evaluate feedback delivery
mechanisms grounded in educational design principles. I will collaborate with researchers in educational psychology
and user-interface design to aid in this e�ort.

Explicitly emphasizing re�ection during and about the so�ware development process. Metacognition, self-regulation,
and re�ection have been linked to improved program comprehension, problem-solving ability, and programming

2



productivity in both expert and novice programmers [11, 12, 1]. How can we design instructional strategies to
encourage re�ection about one’s so�ware development process? How might this impact students’ project outcomes
as they work on large and complex so�ware projects?

Studying professional so�ware developers. I plan to collaborate with so�ware engineering researchers and industry
professionals to study the development habits of professional developers. Using methods and interventions such as
those described above, can we include feedback about the development process in the feedback loop (e.g., in-IDE
static analyses, code coverage, continuous integration, etc.) that governs much so�ware development today? What
e�ects would this have on so�ware quality?

Long-term: Teaching good programming process for end-user so�ware development. �e development of
so�ware — historically the sole purview of trained so�ware professionals — is increasingly being carried out in a
professional capacity by people with varying intents and motivations [13]. �ere are far more end-user programmers
today than professional so�ware developers [14]. For example, data analysts o�en maintain computational note-
books or spreadsheets to help make sense of data. What does e�ective programming process look like for people
in these roles? How is this similar to or di�erent from “traditional” so�ware engineering best practices? How can
we design instruction for students preparing to enter these roles, keeping in mind their motivations and intents for
practicing computing?

Research Philosophy
Diversity in research. I respect the importance of diversity in research. My work as a researcher in computing
education and so�ware engineering is inherently human-centered. As a ma�er of ethics and pragmatics, it is imper-
ative that all people are equitably represented in this research. Our �ndings are inherently weaker when they leave
out particular demographics — such as women and other underrepresented minorities — and it is ethically unsound
to put them into practice when they could potentially a�ect how people learn or practice their profession. I put this
commitment to practice when I conduct ethnographic studies, by inviting diverse groups of students to participate
in interviews.

Impact. A good indicator of success in scholarship is its impact, particularly in human-centered research like
education and so�ware engineering. I will continually work to put my �ndings to practice, in the form of new tools,
engineering processes, teaching practices, or pedagogical material. For example, I am actively working to integrate
formative feedback about so�ware development based on my research in our Data Structures & Algorithms course
at Virginia Tech.

References
[1] Dastyni Loksa, Amy J. Ko, Will Jernigan, Alannah Oleson, Christopher J. Mendez, and Margaret M. Burne�.

Programming, problem solving, and self-awareness: E�ects of explicit guidance. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems, CHI ’16, pages 1449–1461, New York, NY, USA, 2016. ACM.

[2] Ayaan M. Kazerouni, Stephen H. Edwards, T. Simin Hall, and Cli�ord A. Sha�er. DevEventTracker:
Tracking development events to assess incremental development and procrastination. In Proceedings
of the 2017 ACMConference on Innovation and Technology in Computer Science Education, ITiCSE ’17,
pages 104–109, New York, NY, USA, 2017. ACM.

[3] AyaanM. Kazerouni, StephenH. Edwards, and Cli�ord A. Sha�er. �antifying incremental develop-
ment practices and their relationship to procrastination. In Proceedings of the 2017 ACM Conference
on International Computing Education Research, ICER ’17, pages 191–199, New York, NY, USA, 2017.
ACM.

[4] Ayaan M. Kazerouni, Cli�ord A. Sha�er, Stephen H. Edwards, and Francisco Servant. Assessing
incremental testing practices and their impact on project outcomes. In Proceedings of the 50th ACM
Technical SymposiumonComputer Science Education, SIGCSE ’19, pages 407–413, NewYork, NY, USA,
2019. ACM.

3



[5] Stephen H. Edwards, Krishnan P. Murali, and Ayaan M. Kazerouni. �e relationship between vol-
untary practice of short programming exercises and exam performance. In Proceedings of the ACM
Conference on Global Computing Education, CompEd ’19, pages 113–119, New York, NY, USA, 2019.
ACM.

[6] Canvas the learning management platform. Accessed: 2019-11-05.

[7] Cli�ord A. Sha�er, Ville Karavirta, Ari Korhonen, and �omas L. Naps. Opendsa: Beginning a community
active-ebook project. In Proceedings of the 11th Koli Calling International Conference on Computing Education
Research, Koli Calling ’11, pages 112–117, New York, NY, USA, 2011. ACM.

[8] Tomasz D Loboda, Julio Guerra, Roya Hosseini, and Peter Brusilovsky. Mastery grids: An open source social
educational progress visualization. In European conference on technology enhanced learning, pages 235–248.
Springer, 2014.

[9] Com Howlin and Danny Lynch. A framework for the delivery of personalized adaptive content. In 2014
International Conference on Web and Open Access to Learning (ICWOAL), pages 1–5. IEEE, 2014.

[10] James C. Davis, Daniel Moyer, Ayaan M. Kazerouni, and Dongyoon Lee. Testing regex generalizabil-
ity and its implications. In Proceedings of the 34th ACM/IEEE International Conference on Automated
So�ware Engineering, ASE 19, San Diego, CA, 2019.

[11] Stephen H. Edwards. Using so�ware testing to move students from trial-and-error to re�ection-in-action.
SIGCSE Bull., 36(1):26–30, March 2004.

[12] Anneli Eteläpelto. Metacognition and the expertise of computer program comprehension. Scandinavian Journal
of Educational Research, 37(3):243–254, 1993.

[13] Bonnie A Nardi. A small ma�er of programming: perspectives on end user computing. MIT press, 1993.

[14] Margaret M. Burne� and Brad A. Myers. Future of end-user so�ware engineering: beyond the silos. In Pro-
ceedings of the on Future of So�ware Engineering - FOSE 2014, pages 201–211, Hyderabad, India, 2014. ACM
Press.

4


