Quantifying the Programming Process
to Help Teach Incremental Development

Ayaan M. Kazerouni, SIGCSE Student Research Competition
Computer Science, Virginia Tech
February 24, 2018

The Problem

The programming process is complex and is not thoroughly assessed.

f$¢

Post-mortem
Measures

« Correctness
 Code style
* Code coverage

Web-CAT [1], AutoLab [2],
Cl

The Problem

The programming process is complex and is not thoroughly assessed.

Post-mortem
Measures

Incremental Development

« Time management
« Effective software testing « Correctness
* Code style

Hackystat [3], Marmoset [4], NPSM [5 « Code coverage

Error Quotient [6], Watwin [7]

Web-CAT [1], AutoLab [2],
Cl

DevEventTracker

Add Method Add Test Method

Launch
Test Case

[eciip kspace - i jectli i lient.java - Eclipse
(@G B0 HWEISES 5P RO :=1C
- 1B verT gava |) Ec java | =0

T Launch
Edit Events i Test Case

ype- d 't @ stored user UUID from preferences, or from the
se
I : Edi

not d
ing userluid = retrieveUser(getEmail()). toString();

Time: 1518815331598 «oypsuisns
Commit: acedb45 e e

+ data.timestamp + "&runtime=" + data.runtime + "&tool="
+ data.tool + "&sensorDataType=" + data.sensorDataType

Current-Size: 661

(Property p : data.getPropertiesQ).property) {

try {
M ethods L) 2 requestString += "&name" + counter + + URLEncoder. encode(p.getKey(), "UTF-8");
. requestString += "&value” + counter + "=" + URLEncoder.encode(p.getValue(), "UTF-8");

counter++;
g e } catch (UnsupportedEncodingException e) {
» [1) SensorDatas.java 343 Activator. getDefault().log(e);
> beat.ecli 344 3
» i " 345 3 -
b 346 Response response = makeRequest(Method. GET, requests: re a o I n
> ’ . $ i
i org.webcat eclipse.projectiink 347 if (Iresponse.getStatus().isSuccess())
> ji org.webcat.eclipse projectiink.dialogs Cas
> org.webcat.eclipse.projectiink.exporter 349 throw new SensorBaseClientException(response. get:
» 3 org.webcat.eclipse projectlink.i18n 350
> i org.webcat.eclipse.projectiink.importer 351 3
» 3 org.webcat.eclipse.projectlink.importer.model 352 }

» % org.webcat.eclipse.projectlink preferences 353 -
> oronetcatscoseprectncn L oo 53 @ saato Dactaraten] 5 semch| B o) ype: [est Case
-

cons
i 0 errors, 22 warnings, O others.

Time: 1518815342813

T2 plugin.xmi

Status: Passed
|

Writable Smartinsert | 329:28

Step Over

Modelling Incremental Development

Writing, testing, and debugging small chunks of code at a time.

m Working Early and Often
m Software Testing Practices

Early/Often Index

A quantification of procrastination.

= Early/Often Index: The average number of days until the deadline, across
all edits.

m If E is the set of all edits made, then

E size(e) x daysToDeadline(e)

earlyO ften(E) = —
yO/ten(E) Z‘eeEsize(e)

Early/Often Index

Better Early/Often scores were related to more semantically correct programs
and earlier project completion times.

Project Outcome | _________F|______p-alue

Correctness 16.2 < 0.0001 *
Time of completion 55.9 < 0.0001 *

Mixed Model: John Doe did better on projects when he had a higher Early/Often score,
than when he had a lower one.

Incremental Test Writing ™

Quantifying Solution-Test Coevolution.

m For a given work session:
m ['FE s the set of test edits
m SF s the set of solution edits

TE
STC = Avg(—————=) across all work sessions
O+ 1L

B Data suggests a relationship with project correctness (F = 7.2, p = 0.007%)

Visual Feedback and Analysis

Fig. 1: Good Test Writing Fig. 2: Poor Test Writing
-] B Test Code o] B Test Code
8 _ @ Solution Code S - @ Solution Code
Sl lﬂﬂ‘ﬂﬂ”ll o J]J]ﬂﬂjlﬂﬂﬂﬂl_llzj

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Work Session # Work Session #
9

Future Work

B |mprove assessments of software testing

®m Design and implement interventions
m Reqgular, adaptive emails
m [earning dashboard

m Assess their impact

m |terate

10

Contributions

B Process-based assessments should benefit students working on large and
complex programming projects

m Scope for adoption in the software engineering community at large

11

References

[1] Stephen H. Edwards and Manuel A. Perez-Quinones. 2008. Web-CAT: automatically grading programming assignments. SIGCSE
Bull. 40, 3 (June 2008), 328-328. DOI=http://dx.doi.org/10.1145/1597849.1384371

[2] AutoLab:

[3] Philip M. Johnson, Hongbing Kou, Joy Agustin, Christopher Chan, Carleton Moore, Jitender Miglani, Shenyan Zhen, and William E. J.
Doane. 2003. Beyond the Personal Software Process: metrics collection and analysis for the differently disciplined. In Proceedings of the
25th International Conference on Software Engineering (ICSE '03). IEEE Computer Society, Washington, DC, USA, 641-646.

[4] Jaime Spacco, William Pugh, Nat Ayewah, and David Hovemeyer. 2006. The Marmoset project: an automated snapshot, submission,
and testing system. In Companion to the 21st ACM SIGPLAN symposium on Object-oriented programming systems, languages, and
applications (OOPSLA '06). ACM, New York, NY, USA, 669-670. DOI: https://doi.org/10.1145/1176617.1176665

[5] Adam S. Carter, Christopher D. Hundhausen, and Olusola Adesope. 2015. The Normalized Programming State Model: Predicting
Student Performance in Computing Courses Based on Programming Behavior. In Proceedings of the eleventh annual International
Conference on International Computing Education Research (ICER '15). ACM, New York, NY, USA, 141-150. DOI: http://dx.doi.org/
10.1145/2787622.2787710

[6] Matthew C. Jadud. 2006. Methods and tools for exploring novice compilation behaviour. In Proceedings of the second international
workshop on Computing education research (ICER '06). ACM, New York, NY, USA, 73-84. DOI=http://dx.doi.org/
10.1145/1151588.1151600

[7] Christopher Watson, Frederick W. B. Li, and Jamie L. Godwin. 2013. Predicting Performance in an Introductory Programming Course by
Logging and Analyzing Student Programming Behavior. In Proceedings of the 2013 IEEE 13th International Conference on Advanced
Learning Technologies (ICALT '13). IEEE Computer Society, Washington, DC, USA, 319-323. DOI=http://dx.doi.org/10.1109/ICALT.2013.99

12

http://autolab.github.io/2015/03/autolab-autograding-for-all/

Thank you

Questions?

