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The Problem

The programming process is complex and is not thoroughly assessed.
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The Problem

The programming process is complex and is not thoroughly assessed.
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Modelling Incremental Development

Writing, testing, and debugging small chunks of code at a time.

m  Working Early and Often
m  Software Testing Practices




Early/Often Index

A quantification of procrastination.

= Early/Often Index: The average number of days until the deadline, across
all edits.

m If E is the set of all edits made, then

E size(e) x daysToDeadline(e)

earlyO ften(E) = —
yO/ten(E) Z‘eeEsize(e)




Early/Often Index

Better Early/Often scores were related to more semantically correct programs
and earlier project completion times.

Project Outcome | _________F|______p-alue

Correctness 16.2 < 0.0001 *
Time of completion 55.9 < 0.0001 *

Mixed Model: John Doe did better on projects when he had a higher Early/Often score,
than when he had a lower one.




Incremental Test Writing ™

Quantifying Solution-Test Coevolution.

m  For a given work session:
m ['FE s the set of test edits
m SF s the set of solution edits

TE
STC = Avg(—————=) across all work sessions
O+ 1L

B Data suggests a relationship with project correctness (F = 7.2, p = 0.007%)




Visual Feedback and Analysis

Fig. 1: Good Test Writing Fig. 2: Poor Test Writing
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Future Work

B  |mprove assessments of software testing

®m  Design and implement interventions
m  Reqgular, adaptive emails
m [earning dashboard

m  Assess their impact

m |terate
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Contributions

B Process-based assessments should benefit students working on large and
complex programming projects

m  Scope for adoption in the software engineering community at large
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