COMPUTER SCIENCE

VIRGINIA TECH

\/a

Measuring the Software Development
Process to Enable Formative
Assessments

Ayaan M. Kazerouni <ayaan@vt.edu>
Computer Science, Virginia Tech
Friday, 18 December 2020

Advisory Committee
Cliff Shaffer, Steve Edwards, Francisco Servant, Dennis Kafura, Jaime Spacco

Graduating CS students tend to face
difficulties upon entering the work-force

“on-the-job learning”

1o Jomermal of
Svstems and

Software

wWww . elsevier. comlocatn'ss

ELSEVIER The Jouwmal of Systems and Soltware 3 (2000) £3-71

@
~—1
—
—
—
—

ts

‘n‘ Priorities for the education and training of software engineers
Timothy C. Lethbridge *

Schood of ovmarkn Techwology and Enghveerivg, University of Ovrana 150 Lowis Pasvewe, Oitava, Onr, Cavandu KIN 6N5

Recenved 27 July 1999, recenved in revsed tomm 1S September 1999, .lu..'"(\'.l 22 October 1999 udenta

re not

are in-
ted to

ts, but

d pro-

£ soft-

at pro-

their

.\b’h‘f‘(' Lzuu].
\dents’

other

We present the complete results of our 1998 survey of software practittoners. In this survey we asked over 200 software de
1its are

velopers and managers from around the world what they thought about 75 educational topics. For each topic, we asked them how e
much they had learned about 1t in their formal education, how much they know about it now and how important the topac has been e

at

T - " ; ; , . scicss
in their career. The obpective of the survey was to provide data that can be used to improve the education and training of infor et

RIG 1 ? . . 11 i r e -
mation technology workers. The results suggest that some wadely taught topics perhaps should be taught less. whike coverage of .

uch as
P, s pro-
other topics should be increased 2000 Elsevier Science Inc. All nghts reserved)

S Jona

e in-

- . > ¥ who

Keywords Software csguneening edwcation: Compating oducation. Soltware engineering body ol knowlkedge npany

e that

order
o were 2

c liter-

‘where

a syswiay

goal of this agogy, Compute:

SIGCSE 13, March 6-9, 2013, Denver, Colorado, USA. ce education

Convright © 2013 ACM 978-1-4503-1868-6/13/03..$15.00.

Focus is on the engineered product, and ignores the engineering process

Process
0
Time management Correctness
Software testing Code style
Test quality Code coverage

e.g., Web-CAT, CI/CD

Overarching hypothesis

Formative feedback about software development will help student

developers achieve better project outcomes.

Thesis addressed in this talk

Measurable differences in students’ software development processes

can explain differences in their project outcomes.

Outline

Motivation

Infrastructure

Time Management

Software Testing

PN

Test Process

Test Quality

Context

CS 2

Software Design & Data

Structures

A
)

Simpler
Smaller
Scaffolded

~1-2 weeks

CS3

Data Structures &
Algorithms

Relatively complex

Larger
Un-scaffolded

~3-4 weeks

”

“on-the-job learning

Failure rates

Fall 2016: 22%
Fall 2018: 28%

Better Feedback on Software Development

Programming effort Feedback

Time =2

Correctness: 100%

I | cocccowrage 89%

How do we observe a ~30-hour development process carried out at home?

i o o @ eclipse-workspace - org.webcat.eclipse.projectlink/src/org/webcat/eclipse/deveventtracker/sensorbase/SensorBaseClient.java - Eclipse

D @i NG O WG ™S S P RE I e

PostToServerTimerTask.java W m EclipseSensorConstants.java

oo o Tome—oToe

=)

‘ [% Package Explorer 82 _[{ Project Explorerw = 08 ‘m@ EclipseSensor.java
- - o=

A=Y 317 */
»rg.webcat.eclipse.cs2114 318= public synchronized void putSensorData(SensorData data)
»rg.webcat.eclipse.projectlink [eclipse-plugins-importer-exporter De z%g : throws SensorBaseClientException
Referenced Libraries
i 221 if (getPushToServer())

Edit Events
¬ present.
. . in8 rUuid = retrieveUser(getEmail()).toStringQ);
Type- Edlt 1 erbul retrieveUser(getEmail 0oString

// Retrieve the stored user UUID from preferences, or from the
// server if

N St entProjectUuid = retrieveStudentProject(
Tlme: 1518815331598 Pta.getProjectUri()).toString(Q);
Commit: acedb45 T udentProjectiuid + “husertind. + vservotd + "tine-"

+ data.timestamp + "&runtime=" + data.runtime + "&tool="

Cu rre nt_S I Ze . 661 + data.tool + "&sensorDataType=" + data.sensorDataType

+ "&uri=" + data.uri;
int counter = 1;
MethOdS: 2 for (Property p : data.getProperties().property) {
tr

FrEgrropenyava 339 Y Eequeststr‘ing += "&name" + counter + "=" + URLEncoder.encode(p.getKey(), "UTF-8");

> [2} sensorBaseClient java 340 requestString += "&value" + counter + "=" + URLEncoder.encode(p.getValue(), "UTF-8");

> [JgSensorBaseCIientException.java 341

» [J} SensorData.java 342

> DgSensorDatas.java 343
> ‘5% org.webcat.eclipse.deveventtracker.sensorshell 344

> ﬂ% org.webcat.eclipse.deveventtracker.sensorshell.command 345 1
346 Response respon

> i org.webcat.eclipse.projectlink 347 if (lresponse.g Type: Test Case

»> a‘% org.webcat.eclipse.projectlink.dialogs

iensordata-repo-mining

348 { .
> A .eclipse.projectlink. -
#2 org.webcat ecI!pse pro!ectlfnk Taxporter 349 throw new S TI m e . 1518815342 813
> E% org.webcat.eclipse.projectlink.i18n 350 }
»> a% org.webcat.eclipse.projectlink.importer 351 } .
> H3 org.webcat.eclipse.projectlink.importer.model 352 } Statu S = Pa Ssed
»> B}, org.webcat.eclipse.projectlink.preferences 353 Y. \
- ﬂ% org.webcat.eclipse.projectlink.util 190 Problems £} @ Jkdoc Declaration} 23 Search\] = Console} R -
icons N,
glib 0 errors, 22 warnings, O others’
L Description ~ Resource Path Location Type
= META-INF
N . » & Warnings (22 items)
i build.properties
% plugin.xml
epodriller

Writable Smart Insert 329:28

Events emitted for IDE actions

o Edit
* Program execution
* Test execution

Debugger step

* one of 4 developers

Time Management

Better Feedback on Software Development

Programming effort

Time =2

Work Session

— . —

Feedback
Correctness: 100%
Code coverage: 89%

Procrastination

10

Proposed Measure of Working Early and Often

 Early/Often Index

Mean edit time in
terms of days
before the deadline

Code Edits

30 14
Time (days)

H work was done farther before the deadline | | work was done closer to the deadline

11

Deadline

Early/Often Index: Example from Project 1 in Fall 2016

Edit Mean Time Deadline
2500
2000 Mean edit time is
September 8
E 1500
g (6 days before the
£ 1000 deadline)
500

12

Validating the Early/Often Index ITICSE “17
No readily available oracle to help measure accuracy.

Agreement with

» Students’ own perceptions of their process

Interviews with students n=7

* Project evolution observed in change

histories

Manual inspection of Git — 17
histories n= Identified differences between

* |ndividual students

* Individual assignments for the same student

13

Students tend to work on projects <10 days before the deadline

Distributions of Early/Often Scores Similar distributions observed for
: !
20 f : « Solution code editing
15 « Test code editing

* Program and test executions

Early/Often Score
|_I
o

* Debugger use

Solution Code Test Code

14

Research Method

)

\
)

T
-

Repeated Measures

) @

@
(—

Mixed-model ANCOVA

Fixed effects: Development
process metrics

Random effects: Individual
students

15

Project correctness

Students produced projects with higher correctness when
they worked earlier and more often.

Distribution of correctness scores 0.95

250

200
hd

@ 150
2
(a1

100

50

0

0.0 0.2 0.4 0.6 0.8 1.0
\ Project Correctness Score]
i

53% A7%

16

Project correctness

Students produced projects with higher correctness when
they worked earlier and more often.

20

=
(9)

(Solution Code)
=
o

Early/Often Index
o

< 0.95

Project Correctness Score

>= (0.95

Cohen’'s d = 0.69

17

Time of submission

Students had earlier finish times and reduced likelihoods of late submission
when they worked earlier and more often.

17.5

=
V1
o

=
N
(92

|
o
o

7.5

(Solution Code)

5.0

Early/Often Index

2.5

0.0

—2.5

Late

On Time

Cohen’'sd = 1.10

18

Total time spent on the project

of Observations

Measured by adding up the lengths of individual work sessions

00]
o

o
o

I
o

N
o

25

50 75 100 125
Total time spent (hours)

150

175

Students spent a median of
34.45 hours on each
project.

No relationship with

e Solution edit mean time

* Project correctness

19

Students tend to work on projects <10 days before the deadline

Distributions of Early/Often Scores Similar distributions observed for
: !
20 f : « Solution code editing
15 « Test code editing

* Program and test executions

Early/Often Score
|_I
o

* Debugger use

Solution Code Test Code

20

Summary: Time Management on Software Projects ICER 17

When students worked earlier and more often, projects

+ Were more correct
+ Were completed earlier

’P Took the same amount of time to complete
®

21

Software Test Process

Better Feedback on Software Development

Programming effort

Time =2

Work Session

E—
o

Solution| Tests

Feedback
Correctness: 100%
Code coverage: 89%

Procrastination

Balance/sequence of testing

23

Motivating Example from Fall 2016 B Solution Code

" TestCode
Student A Student B
1400 1400
1200 1200
© ©
ﬂé, 1000 "g’, 1000
_g 800 g 800
¢ 600 Y 600
= g
- 400 - 400
200 200
0 0
1 2 3 45 6 7 8 9101112131415 1 2 3 45 6 7 8 910111213141516
Work Session # Work Session #

24

Proposed Metrics of Testing Effort

Synthetic example: sequence of developer activity

Solution code Test code

Method A
Method B

Method C
Any method

25

Proposed Metrics of Testing Effort

Synthetic example: sequence of developer activity

Project-wide Overall Testing Effort

.

L9590 %%

S+T

Solution code Test code

N 7

Method A
Method B

Method C
Any method

26

Proposed Metrics of Testing Effort

Synthetic example: sequence of developer activity Solution code Test code
7] Method A
Method B
Project-wide QOverall Testing Effort T []] Method C
S+T [] /] Any method

Project-wide per-Session Testing Effort

) - - WX -

median{

7
Ss + T

N

27

Proposed Metrics of Testing Effort

Synthetic example: sequence of developer activity Solution code Test code
[] /] Method A
Method B
Project-wide Overall Testing Effort T []] Method C
YA A S+T [] /l Any method

Project-wide per-Session Testing Effort

T,
) --- - 222 - W medlan{ }

Ss + T

Method-specific Overall Testing Effort
e

N

median{

28

Proposed Metrics of Testing Effort

Synthetic example: sequence of developer activity

Project-wide Overall Testing Effort

Solution code Test code

[] Z
[] %
] 7

Method A
Method B

Method C
Any method

T
XX S+ T
Project-wide per-Session Testing Effort
7 --- - W) - W
Method-specific Overall Testing Effort
median{
Method-specific per-Session Testing Effort

T,
medlan{ }

Ss + T

T,

median {median {
Ss

el

29

Proposed Metrics of Testing Effort

Synthetic example: sequence of developer activity Solution code Test code
[] /] Method A
Method B
Project-wide Overall Testing Effort T []] Method C
YA A S+T [] /l Any method

Project-wide per-Session Testing Effort

T,
) --- - 222 - W medlan{ }

Ss + T

Method-specific Overall Testing Effort

median{
Method-specific per-Session Testing Effort .
median {median{ > } }
Ss t
Method-specific Overall Sequence of Testing Effort T
. before

T i % _ is “finalised” medlan{ }
) 7 (a) o Method is “finalised Therore + Tarter

Data Collection - Automatically collected Git snapshots

® 400+ project implementations el

Edit Event

Type:
Time:

Edit
1477672862

Snapshot Id:

23479b3

- Eclipse.
v v B g

®:e

= 7 o
public synchronized void putSensorData(SensorData data)

ngwebcat eciipse.cs2114
throns SensorBaseClientException

ngwebcat.eciipse.projectiink [ec:
W\ Referenced Libraries.
1 JRE System Library [J25E-1.5]
4 Plug-in Dependencies

plugins-importer-exporter e

if (getpushToserver())
1
// Retrieve the stored user WID from preferences, or from the

> org.eclipsewb.swt

v i orgwebcat.eciipse deveventtracker String userluid = retrievelser(getEnail()). toString();

>
> String studentProjectliuid = retrieveStudentProject(

& doto. getProjectUri 0. toStringO;

s String rea g = .
> + studentProjectUuid + "AuserUuid=" + userluid + "&ti

> (3} StateChangeTimerTask jva

+ data. timestamp + "Sruntine=" + data. runtime + "&tool=’
deveventiracker.addon -

+ data. ool + "&sensorDataType=" + data. sensorDataType
+ "Buri=" + data.uri;
int counter = 1
for (Property p : data.getProperties().property) {
try {

» 1) Properties.java
» 1) Propertyjava

» (1) SensorBaseClient java

» [J) SensorBaseClientException.java
&

requestString += "Sname” + counter + =" + URLEncoder. encode(p.getKey(), “U
requestString += "Avalue’ + counter + "=" + URLEncoder. encode(p.getValueQ), "UTF-&

} catch (UnsupportedencodingException €) {

Activator. getDefault0). log(e);

> [3) sensorDatas java

<

3
Response response = makeRequest(Method. GET, requestString, nul1);
iF Clresponse. getStatusO). isSuccess()

> i orgwebcat eclpse.projectink
> i orgwebcat ecipse projectink dalogs

> i orgwebcatcipse.projectink exporter throm new SensorBaseClientException(response. getStatus());
> 8 orgwebeat ecise projectink.i18n
webcatecipse 3
importermodel b
*] Problems 33 . @ Javadoc (S Declaration 5 Search B Console S =0
Oerrors, 22 ot
Description ~ Resource path Location Type
> & Wornings (22 items)
weiable Smartinsert | 329:28

Time
12:41:02
12:41:02

12:41:02

Type Size
Change in method insertFront +5
Change in method getSize +1

Change in test for insertFront +3

31

Overall Testing Effort

UHHH AL
Solution Code Effort Test Code Effort

Relationship with project outcomes

When students put in more overall testing effort, they produced

+ Programs with higher correctness

+ Test suites with higher condition coverage

32

Per-Session Testing Effort

Work Session

Median testing effort across work sessions

Most students devote less than 20-25% of
effort to testing in most of their work sessions

Number of Projects

0.2 03 04 . 0.6 0.7

Per-Session Testing Effort

33

Per-Session Testing Effort

7%, -, - W% -

Work Session

Relationship with project outcomes

When students put more testing effort in each session, they produced
+ Programs with higher correctness

+ Test suites with higher code coverage

34

Motivating Example (Reprise) B Solution Code

" TestCode
Student A Student B
1400 1400
1200 1200
© ©
ﬂé, 1000 "g’, 1000
_g 800 g 800
¢ 600 Y 600
= g
- 400 - 400
200 200
0 0
1 2 3 45 6 7 8 9101112131415 1 2 3 45 6 7 8 910111213141516
Work Session # Work Session #

35

Method-specific Sequence of Testing Effort

Number of Observations

40

30

20

10

P T1Te 1N O T 21

Students did not tend to practice test-first development.

In 85% of projects, student did most of
their testing after the relevant code

under test was finalised.

[I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

Method-specific Overall Sequence of Testing Effort (MOS) 36

Method-specific Sequence of Testing Effort

Ha) L O

Relationship with project outcomes
When students did more testing before the relevant code was finalised

@ Programs with no change in correctness
@

B Test suites with lower code coverage

Summary: Incremental Testing on Software Projects

Overall testing effort

7

7

%

%

4= Correctness

4= Code Coverage

Tendency to “test first”

Per-session testing effort

4= Correctness

=<= Code Coverage

o)

(a)

(8]

? Correctness

== Code Coverage

38

Software Test Quality

Better Feedback on Software Development

Programming effort

Time =2

I

Method A Method B | Method C

Work Session

E—
{2

Solution| Tests

[

Feedback
Correctness: 100%
Code coverage: 89%

Procrastination

Balance/sequence of testing

Thoroughness of testing

40

Code coverage

ublic static String compare(int a, int b) {

@Test

public void testCompare() {
compare(2, 3);
assertTrue(

1 compare(3, 2).length() > 0

),
}

x Weak test adequacy criterion

41

Executing each student’s tests against every other student’s code

Strong test adequacy criterion

e
O = e
S)
o=@

Assumes compatible API designs

x Precludes incremental feedback

42

Mutation Testing

Original Program

1f (numl >= num2) {
return “GEQ”;

} else {
return “L”;

ks

Mutant Programs

if Chuml < num2) {

Pelie cnuml s= 0) {
1
el thuml > num2) {
return null;
W
! if (true) {
1 else {
D

43

Mutation Testing

\/ Strong test adequacy criterion

\/ Allows incremental feedback

x Prohibitively high computational cost

44

Context

Web-CAT 1 submission / 5.5 seconds

Automatic grading

using student-written tests Peak: 1 submission / 1.5 seconds

submissions

pitest.org
Coles 2016

Mutation
Testing

CS 2 1,019 30 seconds

CS 3 370 5.04 minutes

45

How can we reduce the cost of mutation analysis?

“do fewer”

80

——{ Mutant Sampling

—| N-Selective Mutation
93

Mutant Reduction

—| Constraint Mutation
91

{ Mutant Clustering

08
Higher Order Mutation

Mutation Testing
Cost Reduction

Execution
Reduction

Mutation Type /8

82

Strong Mutation

{ Weak Mutation

Advanced Environment

“do faster”

Execution Type

Firm Mutation
88
SIMD
88
{ MIMD
92
{ Parallel
93
I Interpreter
87
| Compiler
31
{ Mutant Schemata
92

08

Jia & Harman 2010

{ Bytecode Translation
04

~
>

78 80 82 84 86 88 90 92 94 9 98 00 02 04 06 08 46

How can we reduce the cost of mutation analysis?

Jia & Harman 2010

N-Selective Mutation

J

Mutant Reduction

Only apply certain kinds of mutations

Replace conditionals with Boolean literals

a>b > true, a>b > false Can we do this fast enough for

' ?
Replace arithmetic expressions with its operands incremental feedback:

a+b->a, a+b->0Db
47

Mutation by Deletion (Offutt et al. 2014)

pitest.org
Mutator Example
Delete conditional expressions a>b > true
Delete arithmetic operators a+b > a

getString() -> null

Delete non-void method calls getInt() >0

Delete void method calls performAction() =
Delete assignments to member variables this.age = 25 - this.age = 0
Delete constructor calls new String() - null

48

Context

Web-CAT 1 submission / 5.5 seconds

Automatic grading

using student-written tests Peak: 1 submission / 1.5 seconds

pitest.org

Our

approach

— All ~30 6 deletion
B i

CS 2 1,019 30 seconds 4.75 seconds 10% of the cost
90% of the
5.04 minut 1.11 minut .
CS 3 370 MINHLES MINHEES effectiveness

49

Incremental subsets of mutation operators

Forward selection. Which Deletion mutators best predict the full mutation score?

of Mutants Produced (per
KSLoC)

Mutators Added Effectiveness
Median % of All

Mutants
RemoveConditionals 102 7.04% 78%

50

How does the size of the program relate to the chosen operators?

— B CS?2
B CS 3

© 1200

-

P1 P2 P3 P4 P5 P6 P7
Project #

400 —

200 —

51

How does the size of the program relate to the chosen operators?

Group projects Group 1 Group 2 Group 3 Group 4
based on size

160 i
i
i
_ 140 !
]
> @) O @)
mM (@] 1 O o
— 120 - I J
I n L I n
= 3 g 5
1
5 100 3 1 g D
o ! —
e]
Q80 |
-
E
2 60
Y
(@]
40
20
0
0 250 500 750 1000 1250 1500 1750

Source Lines of Code (SLoC)

52

How does the size of the program relate to the chosen operators?

Group projects
based on size

Operator Added

RemoveConditionals

Grow the subset by
choosing the next
Deletion operator NonVoidMethodCalls

VoidMethodCalls

ArithmeticOperatorDeletion

MemberVariables

ConstructorCalls

1-operator subset

2-operator subset

6-operator subset
3-operator subset P

53

How does the size of the program relate to the chosen operators?

RemoveConditionals ArithmeticOperatorDeletion NonVoidMethodCalls
Group projects
based on size SmeMEOUpS

- SG1 s SG2 SG3 s SG4
Evaluate each

incremental subset on II I

each group 1-op Subset 2-0p Subset 3-op Subset
Incremental Subsets 54

o
©

Grow the subset by
choosing the next

o
o

Deletion operator

©
o

Accuracy
(Adj. R? predicting FULL coverage)
o
~

o
Ul

Summary: Mutation Analysis

Using ALL mutators is too expensive Using DELETION mutators is also
too expensive (for larger projects)

Only deleting Conditionals and Can reduce further based on project size
Arithmetic Operators
 Large: Conditionals (~20 seconds)
e 10% of the work (~30
seconds for CS 3 projects) Medium: Conditionals + Arithmetic
Operators (~30 seconds)
e 90% of the effectiveness
« Small: ALL mutators? (~16 seconds)

55

Closing Remarks

Summary

Time management

e Students are spending 30-

40 hours on projects mostly

in the last 10 days!

* Working early and often can
lead to more constructive

time spent on projects.

* Might lead to increased
correctness and earlier finish

times

Incremental Testing

There is some evidence of
incremental testing, but it

can be improved

We can identify it with lead

time before the deadline

Might lead to increased
correctness and stronger

test suites

Mutation Testing

Much better method of evaluating
test suites, hindered by

computational cost

Simple approaches can maintain
effectiveness while drastically

reducing cost

Recommended approaches differ

based on project under test

o7

Future Work

Designing and deploying feedback based on software process measurements.

Why are students not self-regulating their development habits?

Mutation operator selection based on pedagogical value AND program characteristics.

Can this work be applied to industry or open-source projects?

What is good process for end-user software developers?

Longitudinal studies.

58

Thanks!

Committee members

Cliff Steve Francisco Dennis Jaime
Shaffer Edwards Servant Kafura Spacco
National Science Foundation Instructors and students of CS 3114 at VT

COLLEGE OF ENGINEERING

COMPUTER SCIENCE

VIRGINIA TECH.

59

Summary

Time management

Incremental Testing Mutation Testing

« Students are spending 30- * There is some evidence of * Much better method of evaluating
40 hours on projects mostly incremental testing, but it test suites
in the last 10 days! can be improved

* Simple approaches can maintain
« Working early and often can * We can identify it with lead effectiveness while drastically
lead to more constructive time before the deadline reducing cost

time spent on projects.

* Might lead to increased « Recommended approaches differ
« Might lead to increased correctness and stronger based on project under test
correctness and earlier finish test suites

times 60

Bonus Slides

Other measures of central tendency

(9p)]

Median edit time in §

terms of days §

before the deadline ;3:
30

14
Time (days)

H work was done farther before the deadline

work was done closer to the deadline

62

Total time spent on the project

of Observations

Measured by adding up the lengths of individual work sessions

00]
o

o
o

I
o

N
o

25

50 75 100 125
Total time spent (hours)

150

175

No significant relationship
between total time spent
and solution edit mean time

Earlier test edit median
times were associated with
more time spent on projects

63

Did students get better at programming over the semester?

Pairwise differences in project scores by Assignment

Assignment Pair (Left - Right) Difference
Project 1 Project 2 0.14
Project 3 Project 2 0.19
Project 3 Project 4 0.11

There are significant differences in score means, but scores
did not monotonically increase from Project 1-Project 4.

Incremental Testing—Process-Based Measurements

Correctness Code Coverage
Regression estimate Regression estimate
Testing per-Session 0.30 0.005 * 0.12 0.008 *
Testing per-Session _ N
ver-Method 0.10 0.09 0.002
Sequence of testing - 0.62 —0.06 0.02 *

Incremental Testing—All Measurements

_ Correctness Code Coverage

MEHIE Regression estimate Regression estimate
Testing 0.30 <0.001 * 0.23 <0.001 *
Testing per-Method - 0.12 - 0.41
Testing per-Session - 0.83 - 0.97 *
Test] :
p‘zsr_tl'\;lftﬁigsess'on’ - 0.97 0.08 0.01 *
Sequence of testing - 0.74 -0.06 0.03 *

66

