
COMPUTER SCIENCE

Measuring the Software Development
Process to Enable Formative

Assessments
Ayaan M. Kazerouni <ayaan@vt.edu>

Computer Science, Virginia Tech
Friday, 18 December 2020

Advisory Committee
Cliff Shaffer, Steve Edwards, Francisco Servant, Dennis Kafura, Jaime Spacco

2

Graduating CS students tend to face
difficulties upon entering the work-force

“on-the-job learning”

3

Focus is on the engineered product, and ignores the engineering process

Product

Correctness
Code style
Code coverage
e.g., Web-CAT, CI/CD

Time management
Software testing
Test quality

Process

4

Overarching hypothesis

Formative feedback about software development will help student

developers achieve better project outcomes.

Thesis addressed in this talk

Measurable differences in students’ software development processes

can explain differences in their project outcomes.

5

Time Management

Test Process

Software Testing

Outline

Test Quality

Motivation

Infrastructure

6

Simpler

Smaller

Scaffolded

~1–2 weeks

Relatively complex

Larger

Un-scaffolded

~3–4 weeks

Context

CS 2
Software Design & Data

Structures

CS 3
Data Structures &

Algorithms

Failure rates

Fall 2016: 22%

Fall 2018: 28%

“on-the-job learning”

7

Better Feedback on Software Development

Programming effort

Correctness: 100%
Code coverage: 89%

Feedback
Time à

How do we observe a ~30-hour development process carried out at home?

Edit Events

Type:
Time:

Commit:
Current-Size:

Methods:

Edit
1518815331598
acedb45
661
2

Launch Events

Type:
Time:

Status:

Test Case
1518815342813
Passed

Events emitted for IDE actions

• Edit
• Program execution
• Test execution
• Debugger step

8

* one of 4 developers

Time Management

9

10

Better Feedback on Software Development

Programming effort

Correctness: 100%
Code coverage: 89%

Procrastination

Feedback
Time à

… …

Work Session

11

Proposed Measure of Working Early and Often
• Early/Often Index

work was done farther before the deadline work was done closer to the deadline

D
ea

dl
in

e

Time (days)

Co

de
 E

di
ts

Mean edit time in
terms of days
before the deadline

30 14 1

12

DeadlineEdit Mean Time

Early/Often Index: Example from Project 1 in Fall 2016

Mean edit time is
September 8

(6 days before the
deadline)

13

Validating the Early/Often Index

Interviews with students

Manual inspection of Git
histories

ITiCSE ‘17

𝑛 = 7

𝑛 = 12

Agreement with

• Students’ own perceptions of their process

• Project evolution observed in change

histories

Identified differences between

• Individual students

• Individual assignments for the same student

No readily available oracle to help measure accuracy.

14

Students tend to work on projects <10 days before the deadline

Similar distributions observed for

• Solution code editing

• Test code editing

• Program and test executions

• Debugger use

15

Research Method

Repeated Measures

Mixed-model ANCOVA

Fixed effects: Development
process metrics

Random effects: Individual
students

16

Project correctness

53% 47%

0.95

Students produced projects with higher correctness when
they worked earlier and more often.

17

Project correctness

Cohen’s 𝑑 = 0.69

Students produced projects with higher correctness when
they worked earlier and more often.

18

Time of submission
Students had earlier finish times and reduced likelihoods of late submission
when they worked earlier and more often.

Cohen’s 𝑑 = 1.10

19

Total time spent on the project

Measured by adding up the lengths of individual work sessions

No relationship with
• Solution edit mean time

• Project correctness

Students spent a median of
34.45 hours on each
project.

20

Students tend to work on projects <10 days before the deadline

Similar distributions observed for

• Solution code editing

• Test code editing

• Program and test executions

• Debugger use

21

Summary: Time Management on Software Projects

Were more correct

Were completed earlier

Took the same amount of time to complete

When students worked earlier and more often, projects

ICER ‘17

Software Test Process

22

23

Better Feedback on Software Development

Programming effort

Correctness: 100%
Code coverage: 89%

Procrastination

Balance/sequence of testing

Feedback
Time à

… …

Work Session

… …

TestsSolution

24

Motivating Example from Fall 2016 Solution Code

Test Code

Student A Student B

25

Synthetic example: sequence of developer activity
… … … Method A

Method B
Method C
Any method

Solution code Test code

Proposed Metrics of Testing Effort

26

Project-wide Overall Testing Effort

Synthetic example: sequence of developer activity
… … … Method A

Method B
Method C
Any method

Solution code Test code

𝑇
𝑆 + 𝑇

Proposed Metrics of Testing Effort

Project-wide Overall Testing Effort 𝑇
𝑆 + 𝑇

27

Synthetic example: sequence of developer activity
… … … Method A

Method B
Method C
Any method

Solution code Test code

Project-wide per-Session Testing Effort
… … … 𝑚𝑒𝑑𝑖𝑎𝑛

𝑇!
𝑆! + 𝑇!

Proposed Metrics of Testing Effort

𝑇
𝑆 + 𝑇

28

Project-wide Overall Testing Effort

Synthetic example: sequence of developer activity
… … …

Project-wide per-Session Testing Effort
𝑚𝑒𝑑𝑖𝑎𝑛

𝑇!
𝑆! + 𝑇!

… … …

Method-specific Overall Testing Effort
𝑚𝑒𝑑𝑖𝑎𝑛

𝑇"
𝑆" + 𝑇"

Method A
Method B
Method C
Any method

Solution code Test code

Proposed Metrics of Testing Effort

Synthetic example: sequence of developer activity
… … …

29

Method-specific per-Session Testing Effort
… … … 𝑚𝑒𝑑𝑖𝑎𝑛 𝑚𝑒𝑑𝑖𝑎𝑛

𝑇!
𝑆! + 𝑇! "

𝑚𝑒𝑑𝑖𝑎𝑛
𝑇!

𝑆! + 𝑇!
𝑚𝑒𝑑𝑖𝑎𝑛

𝑇!
𝑆! + 𝑇! "

𝑇
𝑆 + 𝑇

Project-wide Overall Testing Effort

Project-wide per-Session Testing Effort
𝑚𝑒𝑑𝑖𝑎𝑛

𝑇!
𝑆! + 𝑇!

… … …

Method-specific Overall Testing Effort
𝑚𝑒𝑑𝑖𝑎𝑛

𝑇"
𝑆" + 𝑇"

Method A
Method B
Method C
Any method

Solution code Test code

Proposed Metrics of Testing Effort

Synthetic example: sequence of developer activity
… … …

30

Method-specific per-Session Testing Effort
… … … 𝑚𝑒𝑑𝑖𝑎𝑛 𝑚𝑒𝑑𝑖𝑎𝑛

𝑇!
𝑆! + 𝑇! "

𝑇
𝑆 + 𝑇

Project-wide Overall Testing Effort

Project-wide per-Session Testing Effort
𝑚𝑒𝑑𝑖𝑎𝑛

𝑇!
𝑆! + 𝑇!

… … …

Method-specific Overall Testing Effort
𝑚𝑒𝑑𝑖𝑎𝑛

𝑇"
𝑆" + 𝑇"

Method-specific Overall Sequence of Testing Effort
= Method is “finalised” 𝑚𝑒𝑑𝑖𝑎𝑛

𝑇#$%&'$
𝑇#$%&'$ + 𝑇(%)$'

Method A
Method B
Method C
Any method

Solution code Test code

Proposed Metrics of Testing Effort

Data Collection – Automatically collected Git snapshots

■ 400+ project implementations

31

Edit Event

Type:
Time:

Snapshot Id:

Edit
1477672862
23479b3

Type Size Time

Change in method insertFront +5 12:41:02

Change in method getSize +1 12:41:02

Change in test for insertFront +3 12:41:02

32

Solution Code Effort Test Code Effort

When students put in more overall testing effort, they produced

Relationship with project outcomes

Overall Testing Effort

Programs with higher correctness

Test suites with higher condition coverage

33

Per-Session Testing Effort

… … …

Work Session

Median testing effort across work sessions

Most students devote less than 20–25% of
effort to testing in most of their work sessions

Per-Session Testing Effort

N
um

be
r o

f P
ro

je
ct

s

34

… … …

Work Session

Relationship with project outcomes

Per-Session Testing Effort

When students put more testing effort in each session, they produced

Programs with higher correctness

Test suites with higher code coverage

35

Motivating Example (Reprise) Solution Code

Test Code

Student A Student B

36

Method-specific Sequence of Testing Effort

Methodïspecific Overall Sequence of Testing Effort (MOS)

N
um

be
r o

f O
bs

er
va

tio
ns

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40

In 85% of projects, student did most of

their testing after the relevant code

under test was finalised.

Students did not tend to practice test-first development.

37

Relationship with project outcomes

Method-specific Sequence of Testing Effort

When students did more testing before the relevant code was finalised

Programs with no change in correctness

Test suites with lower code coverage

38

…… …

Correctness

Code Coverage

Correctness

Code Coverage

Correctness

Code Coverage

?

Overall testing effort Per-session testing effort

Tendency to “test first”

Summary: Incremental Testing on Software Projects

Software Test Quality

39

40

Better Feedback on Software Development

Programming effort

Correctness: 100%
Code coverage: 89%

Procrastination

Balance/sequence of testing

Thoroughness of testing

Feedback
Time à

… …

Work Session

… …

TestsSolution

Method A Method B Method C

… …

41

Code coverage
public static String compare(int a, int b) {

if (a > b) {
return "Greater than";

} else if (a < b) {
return "Less than";

} else {
return "Equal";

}
}

@Test
public void testCompare() {

compare(2, 3);
assertTrue(
compare(3, 2).length() > 0

);
}

public static String compare(int a, int b) {
if (a > b) {

return "Greater than";
} else if (a < b) {

return "Less than";
} else {

return "Equal";
}

}

Weak test adequacy criterion

42

Executing each student’s tests against every other student’s code

Strong test adequacy criterion

Precludes incremental feedback

Assumes compatible API designs

Tests

Defects
Caught

43

Mutation Testing

...
if (num1 >= num2) {

return “GEQ”;
} else {

return “L”;
}

Original Program
...
if (num1 < num2) {

...
} else {

...
}

...
if (num1 >= 0) {

...
} else {

...
}

...
if (num1 > num2) {

return null;
} else {

...
}

...
if (true) {

...
} else {

...
}

Mutant Programs

44

Mutation Testing

Strong test adequacy criterion

Prohibitively high computational cost

Allows incremental feedback

45

Context

CS 2

CS 3

Mutation
Testing

1,019

370

30 seconds

5.04 minutes

submissions

1 submission / 5.5 seconds

Peak: 1 submission / 1.5 seconds Coles 2016

46

How can we reduce the cost of mutation analysis?

Jia & Harman 2010

“do fewer”

“do faster”

47

How can we reduce the cost of mutation analysis?

Jia & Harman 2010

Only apply certain kinds of mutations

Replace conditionals with Boolean literals

a > b à true, a > b à false Can we do this fast enough for
incremental feedback?Replace arithmetic expressions with its operands

a + b à a, a + b à b

48

Mutator Example

Delete conditional expressions a > b à true

Delete arithmetic operators a + b à a

Delete non-void method calls getString() à null
getInt() à 0

Delete void method calls performAction() à

Delete assignments to member variables this.age = 25 à this.age = 0

Delete constructor calls new String() à null

Mutation by Deletion (Offutt et al. 2014)

49

Context

CS 2

CS 3

All ~30
mutators

6 deletion
mutators

1,019

370

30 seconds

5.04 minutes

4.75 seconds

1.11 minutes

submissions

1 submission / 5.5 seconds

Peak: 1 submission / 1.5 seconds

Our
approach

10% of the cost

90% of the
effectiveness

50

Incremental subsets of mutation operators

Mutators Added

of Mutants Produced (per
KSLoC)

Effectiveness
Median % of All

Mutants

RemoveConditionals 102 7.04% 78%

ArithmeticOperatorDeletion 140 (+38) 9.67% 88%

NonVoidMethodCalls 236 (+96) 16.30% 91%

VoidMethodCalls 240 (+4) 16.57% 92%

MemberVariables 271 (+31) 18.72% 92%

ConstructorCalls 283 (+12) 19.54% 92%

Forward selection. Which Deletion mutators best predict the full mutation score?

51

How does the size of the program relate to the chosen operators?

52

How does the size of the program relate to the chosen operators?

Group projects
based on size

Group 1 Group 2 Group 3 Group 4

Operator Added

of Mutants Produced

Adjusted R2
Median % of All Mutants

RemoveConditionals 102 7.04% 0.78

ArithmeticOperatorDeletion 140 9.67% 0.88

NonVoidMethodCalls 236 16.30% 0.91

VoidMethodCalls 240 16.57% 0.92

MemberVariables 271 18.72% 0.92

ConstructorCalls 283 19.54% 0.92

1-operator subset
2-operator subset

3-operator subset
53

How does the size of the program relate to the chosen operators?

Grow the subset by
choosing the next
Deletion operator

6-operator subset

Group projects
based on size

54

How does the size of the program relate to the chosen operators?

Evaluate each
incremental subset on
each group

RemoveConditionals ArithmeticOperatorDeletion NonVoidMethodCalls

Grow the subset by
choosing the next
Deletion operator

Group projects
based on size

55

Summary: Mutation Analysis

Using ALL mutators is too expensive Using DELETION mutators is also
too expensive (for larger projects)

Only deleting Conditionals and
Arithmetic Operators

• 10% of the work (~30
seconds for CS 3 projects)

• 90% of the effectiveness

Can reduce further based on project size

• Large: Conditionals (~20 seconds)

• Medium: Conditionals + Arithmetic
Operators (~30 seconds)

• Small: ALL mutators? (~16 seconds)

Closing Remarks

56

57

Summary

• Students are spending 30–

40 hours on projects mostly

in the last 10 days!

• Working early and often can

lead to more constructive

time spent on projects.

• Might lead to increased

correctness and earlier finish

times

• There is some evidence of

incremental testing, but it

can be improved

• We can identify it with lead

time before the deadline

• Might lead to increased

correctness and stronger

test suites

• Much better method of evaluating

test suites, hindered by

computational cost

• Simple approaches can maintain

effectiveness while drastically

reducing cost

• Recommended approaches differ

based on project under test

Time management Incremental Testing Mutation Testing

58

Future Work

What is good process for end-user software developers?

Longitudinal studies.

Can this work be applied to industry or open-source projects?

Designing and deploying feedback based on software process measurements.

Why are students not self-regulating their development habits?

Mutation operator selection based on pedagogical value AND program characteristics.

59

Thanks!

Committee members

Cliff
Shaffer

Steve
Edwards

Francisco
Servant

Dennis
Kafura

Jaime
Spacco

National Science Foundation Instructors and students of CS 3114 at VT

COLLEGE OF ENGINEERING

COMPUTER SCIENCE

60

Summary

• Students are spending 30–

40 hours on projects mostly

in the last 10 days!

• Working early and often can

lead to more constructive

time spent on projects.

• Might lead to increased

correctness and earlier finish

times

• There is some evidence of

incremental testing, but it

can be improved

• We can identify it with lead

time before the deadline

• Might lead to increased

correctness and stronger

test suites

• Much better method of evaluating

test suites

• Simple approaches can maintain

effectiveness while drastically

reducing cost

• Recommended approaches differ

based on project under test

Time management Incremental Testing Mutation Testing

Bonus Slides

61

62

Time (days)

Co

de
 E

di
ts

30 14 1

Other measures of central tendency

Median edit time in
terms of days
before the deadline

work was done farther before the deadline work was done closer to the deadline

63

Total time spent on the project

Measured by adding up the lengths of individual work sessions

No significant relationship
between total time spent
and solution edit mean time

Earlier test edit median
times were associated with
more time spent on projects

64

Did students get better at programming over the semester?

Pairwise differences in project scores by Assignment
Assignment Pair (Left – Right) Difference

Project 1 Project 2 0.14
Project 3 Project 2 0.19
Project 3 Project 4 0.11

There are significant differences in score means, but scores
did not monotonically increase from Project 1–Project 4.

65

Incremental Testing—Process-Based Measurements

Metric
Correctness Code Coverage

Regression estimate p Regression estimate p

Testing per-Session 0.30 0.005 * 0.12 0.008 *

Testing per-Session
per-Method -- 0.10 0.09 0.002 *

Sequence of testing -- 0.62 —0.06 0.02 *

66

Incremental Testing—All Measurements

Metric
Correctness Code Coverage

Regression estimate p Regression estimate p

Testing 0.30 < 0.001 * 0.23 < 0.001 *

Testing per-Method -- 0.12 -- 0.41

Testing per-Session -- 0.83 -- 0.97 *

Testing per-Session,
per-Method -- 0.97 0.08 0.01 *

Sequence of testing -- 0.74 -0.06 0.03 *

